Syllabus for Pre-Ph.D. Course Work in Electronic Science, 2023

Course Numbers ESL01.R.C to ESL04.R.C are compulsory to all candidates. Out of the remaining courses, the candidate shall select one course depending on the proposed area of research of the candidate. Any other Paper recommended by Departmental Research Council from MTech (EIS) can also be taken as elective paper.

General Course Framework & Structure

Total Credits- 16 & Core papers (C): 04; Elective Papers (E): 01

Course Code	Title of the Paper	Total Mark	Credit
ESL01.R.C	Research Methodology	100	4
ESL02.R.C	Mathematical Electronics	100	4
ESL03.R.C	Research and Publication Ethics	50	2
ESL04.R.C	Seminar Presentation	50	2
ESL05.R.E	Low Dimensional Semiconductor Materials and Devices	100	4
ESL06.R.E	Image Processing	100	4
ESL07.R.E	Advanced Microprocessor	100	4
ESL08.R.E	Soft Computing	100	4
ESL09.R.E	Broadband & Mobile Communication System	100	4
ESL10.R.E	Wireless Communication	100	4
ESL11.R.E	Microstrip Antenna	100	4
ESL12.R.E	High Frequency Measurement Techniques	100	4
ESL13.R.E	CAD for RF & Microwave Circuits	100	4
ESL14.R.E	Computational Electromagnetics	100	4
ESL15.R.E	Metamaterials	100	4
ESL16.R.E	Microelectronic Device and Circuit	100	4
ESL17.R.E	Convex Analysis and Optimization	100	4
ESL18.R.E	Computational Electromagnetics	100	4
ESL19.R.E	Advance Electromagnetics	100	4
ESL20.R.E	Computational and System Biology	100	4
ESL21.R.E	Advanced numerical methods	100	4
Total Marks/C	redit [Core (3nos) +Elective (1no)]	400	16

Details of Syllabus

Course Name:	Research Methodology		Course No.: ESL01.R.C
Credits: Course Deta	04 (4-0-0) ils		Core/Elective: Core
Units		Contents	

Units	Contents
Unit 1	Meaning and objectives of Research, Types of Research, Significance of Research, Research Methods Vs methodology, Scientific method Vs Arbitrary Method, Criteria of good research, Research Design: (meaning of research design, need of research design, basic principle of research design, good design, different designs).
Unit 2	Means and methods of scientific research, Organization of scientific research, Literature : Search for existing literature, Review the literature selected, Develop a theoretical and conceptual framework, writing up the review. Scientific paper: How to prepare Title, Abstract, Introduction, Results, Discussion and References.
Unit 3	Chi-square Test: Applications, Steps Involved in Applying Chi-square Test, Alternative Formula, Conversion, important characteristic and limitation. Analysis of Variance and Covariance: Principle, Technical, Setting and coding.
Unit 4	Interpretation of Data and Paper Writing: Layout of a Research Paper, Journals in Electronic Science, Impact factor of Journals, When and where to publish? Ethical issues related to publishing, Plagiarism and Self-Plagiarism. Use of Encyclopedias, Research Guides, Handbook etc., Academic Databases for Electronic Science Discipline. Use of tools / techniques for Research: methods to search required information effectively, Reference Management Software like Zotero/Mendeley, Software for paper formatting like LaTeX /MS Office, Software for detection of Plagiarism. Zotero/Mendeley, Software for paper formatting like LaTeX /MS

- 1. Business Research Methods Donald Cooper & Pamela Schindler, TMGH, 9th edition
- 2. Business Research Methods Alan Bryman & Emma Bell, Oxford University Press.3.
- 3. Research Methodology C.R.Kothari
- 4. Select references from the Internet

Course	Mathematical Electronics	Course No.: ESL02.R.C	
Name: Credits: Course Details	04 (4-0-0)	Core/Elective: Core	
Units	Contents		
Unit 1	Fourier Series, Fourier Transform, Lap	ies, Fourier Transform, Laplace's Transform, and their properties.	
Unit 2	Z-Transform, DTFS, DTFT, DFT, FFT,	and their properties	

Units	Contents
Unit 3	Linear System, Impulse response, Response of a Linear System, Linear Time Invariant(LTI) System, Linear Time Variant (LTV) System, Transfer function of a LTI System, Filter characteristic of Linear System, Distortion less transmission through a system, Signal bandwidth, System Bandwidth, Ideal LPF, HPF, and BPF characteristics, Causality and Paley-Wiener criterion for physical realization, Relationship between Bandwidth and rise time, Convolution and Correlation of Signals, Concept of convolution in Time domain and Frequency domain.
Unit 4	Design of Experiments - Objectives, strategies, Factorial experimental design, Designing engineering experiments, basic principles- replication, randomization, blocking, guidelines for design of experiment; Analysis of variance- ANOVA- Basic principle, One way and Two-way technique; Analysis of Co-variance- ANOCOVA technique.

- 1. Digital Signal Processing Principles, Algorithms and Applications by J. Prokais and D. G. Manolakis (PHI 3rd edition)
- 2. Todd K.Moon and Wynn C. Stirling, Mathematical Methods and Algorithms for Signal Processing, Pearson Education.
- 3. Douglas C. Montgomery, Design and Analysis of Experiments, 5/e, Willey (India), 2007
- 4. Douglas C. Montgomery, and George C. Runger, Applied statistics and probability for Engineers, 3/e, Willey (India), 2007.

Course	Research and Publication Ethics	Course No.: ESL03.R.C
Name:		
Credits:	02 (2-0-0)	Core/Elective: Core
Course Details	S	
Units	Contents	
Unit 1	Philosophy and ethics	
(Theory)	Introduction to philosophy: definition, nature a Ethics: definition, moral philosophy, nature of mora	nd scope, concept, branches Il judgements and reactions
Unit 2	Scientific conduct	
(Theory)	Ethics with respect to science and research, Inte integrity, Scientific misconducts: falsification, fab Redundant publications: duplicate and overlapping Selective reporting and misrepresentation of data	llectual honesty and research rication and plagiarism (FFP) g publications, salami slicing,
Unit 3	Publication ethics	
(Theory)	Publication ethics: definition, introduction practices/standards setting initiatives and guide Conflicts of interest, Publication misconduct: defi- lead to unethical behavior and vice versa, types, V	and importance, Best elines: COPE, WAME etc., nition, concept, problems that Violation of publication ethics,

Units	Contents		
	authorship and contributorship, Identification of publication misconduct, complaints and appeals, Predatory publishers and journals		
Unit 4	Open access publishing		
(Practice)	Open access publications and initiatives, SHERPA/RoMEO online resources to check publisher copyright & self-archiving policies, Software tool to identify predatory publications developed by SPPU, Journal finder/journal suggestion tools viz. JANE, Elsevier Journal Finder, Springer Journal Suggester etc		
Unit 5	Publication misconduct		
(Practice)	A Group discussions		
	Subject specific ethical issues, FFP, authorship, Conflicts of interest, Complaints and appeals: examples and fraud from India and abroad		
	B Software tools		
	Use of plagiarism software like Turnitin, Urkund and other open source software tools		
Unit 6	Databases and research metrics		
(Practice)	A Databases		
	Indexing databases, Citation databases: Web of Science, Scopus etc.		
	B Research metrics		
	Impact factor of journal as per journal citation report, SNIP, SJR, IPP, Cite score, Metrics: h-index, g index, i10 index, altmetrics		

- 1. Bird, A. (2006). Philosophy of science. Routledge
- 2. MacIntyre, A. (1967) A short history of ethics. London.
- 3. Chaddah, P. (2018) Ethics in competitive research: Do not get scooped; do not get plagiarized.
- 4. National Academy of Sciences, National Academy of Engineering and Institute of Medicine (2009). On being a scientist: A guide to responsible conduct in research: third edition. National Academic Press.
- 5. Resnik, D.B. (2011) What is ethics in research and why is it important. National Institute of Environmental health Sciences, 1-10.
- 6. Beall, J. (2012) Predatory publishers are corrupting open access. Nature, 489 (7415), 179-179.
- 7. Indian National Science Academy (INSA), Ethics in science education, research and governance (2019).

Course	Seminar Presentation	Course No.: ESL04.R.C
Name:		
Credits:	02 (2-0-0)	Core/Elective: Core
Course Details	8	
Units	Contents	
	The student shall select 05 important research Journals. At the end of the Semester, the student sha make presentation based on this review report.	papers published in reputed Ill prepare a review report and

Course	Low Dimensional Semiconductor Materials and	Course No.: ESL05.R.E
Name:	Devices	
Credits:	04 (4-0-0) Core/Elective: Cor	
Course Details		
Units	Contents	
Unit 1	Semiconductor basic concepts: Electrons and hole band gap, Effective mass, Density of states, Ferm Distribution function, concentration of carriers at Variation of energy bands with alloy composition. O properties. Graphene Nanoribbons.	s, Direct and indirect i energy, Fermi-Dirac thermal equilibrium, Graphene and its basic
Unit 2	Heterostructures: General properties of heterost heterostructures, Band engineering, layered structure barriers, doped heterostructures, strained layers, S heterostructures, Wires and Dots, Optical confine approximation, Effective mass theory of heterostruct	Si-Ge, GaAs- InGaAs oment, Effective mass ures.
Unit 3	Quantum wells and low dimensional systems: So wells, Triangular wells, Low dimensional syst subbands, quantum wells in heterostructures. Potential step, T-matrices, Current and conductance Coherent transport with many channels.	uare wells, Parabolic tems, Occupation of Tunneling transport: e, Resonant tunneling,
Unit 4	Scattering rates: The golden rule: The golden rule f Impurity scattering, phonon scattering, Optical absorption, absorption in a quantum well. The 2- Gas: Band diagram of modulation doped structures, a 2 DEG, screening by the electron gas, Scattering other scattering mechanisms.	For the static potential, absorption, interband Dimensional Electron Electronic structure of by remote impurities,

1. John H. Davies, The Physics of Low Dimensional Semiconductors: An Introduction, Cambridge University Press.

2. Low dimensional semiconductor structures: fundamentals and devices, Ed. K. Barnham, D. D Vvedensky, Cambridge University Press.

3. Physics of low dimensional semiconductor structures, Ed. P.N. Butcher, N. H. March, and M. P. Tosi, Springer Nature.

4. B. R. Nag, Physics of quantum well devices, Springer Nature.

5. S. Shafraniuk, Graphene: Fundamentals, Devices and Applications, Jenny Stanford Publishing

Unita	Contonto	
Course Details		
Credits:	04 (4-0-0)	Core/Elective: Core
Name:		
Course	Image Processing	Course No.: ESL06.R.E

Units	Contents		
Unit 1	Digital image fundamentals:Introduction: Digital Image- Steps of Digital Image Processing Systems-Elements of Visual Perception - Connectivity and Relations		
	between Pixels. Simple Operations- Arithmetic, Logical, Geometric Operations.		
	Mathematical Preliminaries - 2D Linear Space Invariant Systems - 2D Convolution		
	- Correlation 2D Random Sequence - 2D Spectrum.		
Unit 2	Image transforms and enhancement:Image transforms and enhancement Imag Transforms: 2D Orthogonal and Unitary Transforms-Properties and Examples. 2 DFT- FFT – DCT - Hadamard Transform - Haar Transform - Slant Transform - K		
	Faualization Technique- Point Processing-Spatial Filtering-In Space and Frequency		
	- Nonlinear Filtering-Use of Different Masks		
	Image restoration and construction: Image Restoration: Image Observation and		
Unit 3	Degradation Model Circulant And Block Circulant Matrices and Its Application in		
	Degradation Model - Algebraic Approach to Restoration- Inverse by Wiener		
	Filtering – Generalized Inverse-SVD And Interactive Methods - Blind Deconvolution-Image Reconstruction from Projections.		
Unit 4	Image compression & segmentation:Image Compression: Redundancy and Compression Models -Loss Less and Lossy. Loss Less-Variable-Length, Huffman, Arithmetic Coding - Bit-Plane Coding, Loss Less Predictive Coding, Lossy Transform (DCT) Based Coding, JPEG Standard - Sub Band Coding. Image Segmentation: Edge Detection - Line Detection - Curve Detection - Edge Linking and Boundary Extraction, Boundary Representation, Region Representation and Segmentation, Morphology-Dilation, Erosion, Opening and Closing. Hit and Miss Algorithms Feature Analysis		
1			

- 1. Digital Image Processing, Gonzalez.R.C & Woods. R.E., 3/e, Pearson Education, 2008.
- 2. Digital Image Processing, Kenneth R Castleman, Pearson Education, 1995
- 3. Digital Image Processing, S. Jayaraman, S. Esakkirajan, T. Veerakumar, McGraw Hill Education ,2009. Pvt Ltd, New Delhi
- 4. Fundamentals of Digital image Processing, Anil Jain.K, Prentice Hall of India, 1989.
- 5. Image Processing, Sid Ahmed, McGraw Hill, New York, 1995.

Course	Advanced Microprocessor	Course No.: ESL07.R.E
Name: Credits: Course Details	04 (4-0-0)	Core/Elective: Elective
Units	Contents	
Unit 1	Intel 20286 Microprocessor – Salient features of descriptions, Addressing mode, Protected virtual operations. 80286 bus interface – interfacing with Interrupt sequencing, Instruction Set features, 80287 M	80286, Architecture, Pin address mode, Special n memory& I/O devices, ath co-processor.
Unit 2	Intel 20386 Microprocessor –Architecture, Pir Organization, Addressing modes, Data Types, Real Protected Mode of 80386, Segmentation Paging. Vir	Address Mode of 80386, rtual 8086 mode, The co-

	processor	r 80387, The Cl	PU with a	a Numeric	Cop	processor	r - 80486.	
Unit 3	Pentium	Processor -	Salient	features	of	80586	(Pentium),	Architecture,
Onit 5	Instructio	on Set, Pentium	– II.					

- Intel Microprocessor 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium and Pentium Pro Processor – Architecture, Programming and Interfacing. Bary B. Brey.
- 2. Advanced Microprocessor & Peripherals. A. K. Roy & K. M. Bhurchandi

Course	Soft Computing	Course No.: ESL08.R.E
Name:		
Credits: Course Details	04 (4-0-0)	Core/Elective: Elective

Units **Contents Evolutionary Computing** Unit 1 Basic Concepts of Genetic Algorithms (GA), Working Principle, Encoding methods, Fitness function, GA Operators- Reproduction; Crossover; Mutation, Convergence of GA, Multi-level Optimization, Real Life Problems. **Hybrid Systems** Sequential Hybrid Systems, Auxiliary Hybrid Systems, Embedded Hybrid Systems, Neuro- Fuzzy Hybrid Systems, Neuro-Genetic Hybrid Systems, Fuzzy-Genetic Hybrid Systems. Evolutionary Design of Neural Networks: Genetic Algorithm (GA) based Back propagation Networks, GA based weight determination, Fitness function, Reproduction, Convergence, and Recent Applications. Fuzzy Systems: Fuzzy Set theory, Fuzzy Relation, Fuzzification, Minmax Unit 2 Composition, Defuzzification, Fuzzy Logic, Fuzzy Rule based systems, Fuzzy Decision Making, Fuzzy Control Systems, Fuzzy Classification

Neural Networks: Basic Concept of Neural Network, Overview of Learning rules and activation functions, Single layer Perceptrons and Learning, Back Propagation networks- Architecture of Backpropagation (BP) Networks; Backpropagation Learning; Variation of Standard Backpropagation Neural Network, Introduction to Associative Memory, Adaptive Resonance Theory and Self Organizing Map, Recent Applications

Units	Contents	
Unit 3	Hybrid Systems: Sequential Hybrid Systems, Auxiliary Hybrid Systems,	
Unit 5	Embedded Hybrid Systems, Neuro- Fuzzy Hybrid Systems, Neuro-Genetic	
	Hybrid Systems, Fuzzy-Genetic Hybrid Systems.	
	Evolutionary Design of Neural Networks: Genetic Algorithm (GA) based Back	
	propagation Networks, GA based weight determination, Fitness function,	
	Reproduction, Convergence, and Recent Applications.	
	Fuzzy Evolutionary Algorithms: Introduction, Fuzzy control of Evolution,	
	Evolutionary Algorithms with Fuzzy components, GA in Fuzzy Logic Controller, Recent Applications	
Unit 1	Neural Network Based Fuzzy Systems: Neural Realization of Basic Fuzzy	
	Logic Operators, Neural Network Based Fuzzy Logic Inference, Neural Network	
Driven Fuzzy Reasoning, Rule based Neural Fuzzy Modeling, N		
	Relational Systems, Neuro- Fuzzy Controllers, Recent Applications. Fuzzy Logic	
	Based Neural Network Models: Fuzzy Neurons, Fuzzy Perceptrons, Fuzzy Neural	
	Networks, Fuzzy Backpropagation (BP) Networks, Fuzzy BP architecture,	
	Learning in Fuzzy BP, Inference by Fuzzy BP, Fuzzy ARTMAP, Fuzzy	
	Associative Memories, Recent Applications	

- Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & Applications, S. 1. Rajasekaran, G. A. Vijayalakshami, PHI.
- Neuro-Fuzzy Systems, Chin Teng Lin, C. S. George Lee, PHI 2.
- 3. Fuzzy Logic and Engineering Application, Tomthy Ross, TMH
- Elements of Artificial Neural Network, KishanMehrotra 4.
- 5. Genetic Algorithms: Search and Optimization, E. Goldberg
- 6. Select references from the Internet

Course	Broadband and Mobile Communication System	Course No.: ESL09.R.E
Name:		
Credits:	04 (4-0-0)	Core/Elective: Elective
Course Details		

Course	Details
Course	Detunis

Units	Contents
	Introduction to broadband mobile communication systems, Mobile radio propagation modeling, Overview of 3G cellular comms, Modulation for broadband comms. & 3G cellular, Digital equalization, OFDM (Multi-tone comms) & 4G cellular, OFDM-CDMA comms, (Space-time) MIMO systems, OFDM-CDMA-MIMO comms & 4G cellular, Smart antennas, Smart antennas &
	3G, 4G cellular.

- 1. T. Rappaport "Wireless Communications. Principles and Practice", 2nd ed., 2002, Prentice Hall
- 2. S. Haykin, M. Moher, "Modern Wireless Communications", 1st ed., 2005, Pearson Educ.
- C.Liberti, T.S.Rappaport "Smart Antennas for wireless communications", 1st ed., 1999, 3. Prentice Hall.
- 4. C. Smith, D. Collins, "3G Wireless Networks", 1st ed., 2002, McGraw-Hill.
- S. Haykin "Communication Systems", 4th ed, 2001, Wiley 5.
- G. L. Stuber "Principles of Mobile Communication", 2nd ed., 2001, Kluwer. 6.
- . Any other prescribed by the module coordinator. 7.

Course	Wireless Communication	Course No.: ESL10.R.E
Name:		
Credits:	04 (4-0-0)	Core/Elective: Elective
Course Details	S	
Units	Contents	
Unit 1	Antennas & Propagation – Antenna, Propagation Fading in mobile environment	Modes, LOS Transmission,
Unit 2	Signal Coding Technique – Coding criteria, Digital D ADDS.	ata Analog Signals (DDAS),
Unit 3	Spread Spectrum – Concept, Frequency Hoping, Generation of Spreading Sequence; Coding & Error Block Error Correction Codes, Convolution Code	Direct Sequence, CDMA, Control – Error Detection, es, ARR; Cellular Wireless
	Network – 1G, 2G and 3G; Cordless Systems & WLL	.; Mobile IP & WAP.

- Wireless Communications & Networks W. Stallings 1.
- 2. Any other prescribed by Module Coordinator

Course	Microstrip Antenna	Course No.: ESL11.R.E
Name:		
Credits:	04 (4-0-0)	Core/Elective: Elective

Course	Details
Course	Details

Units	Contents
	Microstrip and other printed antennas, Various types of feeding methods for microstrip antenna (Co-axial, Inset, Aperture/Slot Coupled, Proximity coupled and Corporate feeding for Arrays); Analysis of rectangular Patch Antenna: Transmission Line Technique, Cavity/ Modal Expansion Technique, equivalent circuit models, numerical techniques for Rectangular Patch Antenna: Spectral Domain Technique, FDTD Model; Techniques for broadband & multiband planner antennas; Planner antennas for circular polarization.

- Microstrip Antenna Design Handbook Garg, Bhartia, Bahl & Ittipiboon (Artech House) 1.
- Hand Book on Microstrip Antenna, J.R James & P.S Hall, (Peter Peregrinus) 2.
- Research Methodology –C.R.Kothari 3.
- Any other prescribed by Module Coordinator 4.

Course	High Frequency Measurement Technique	Course No.: ESL12.R.E
Name:		
Credits:	04 (4-0-0)	Core/Elective: Elective
Course Details		

Units	Contents
Unit 1	Review of measurement and instrumentation basics.
Unit 2	Principles and applications of various sensors used in characterization of RF materials, devices, circuits and system: acoustic, ultrasonic, magnetic, electrical, thermal, optical, radiation and smart sensors,

Units	Contents		
Unit 3	Mechanical and thermal engineering issues for RF modules/ instruments.		
Unit 4	Instrumentation concepts and measurement techniques in: Oscilloscopes, Spectrum analyzers, Network analyzer, Lock-in-amplifiers, Waveform generators, Bit- error rate measurement, S/N measurement Talemetry, Data recording and display. Recent advances in RE and Microwave measurement Techniques		

- 1. T&M Instrument Catalogs and application notes, Agilent
- 2. T&M Instrument Catalogs and application notes, Techtronix
- 3. T&M Instrument Catalogs and application notes, Keithley
- 4. T&M Instrument Catalogs and application notes, L.G.Electronics
- 5. Any other prescribed Module Coordinator

Course	CAD for RF & Microwave Circuits	Course No.: ESL13.R.E
Name: Credits:	04 (4-0-0)	Core/Elective: Elective
Course Deta	ils	
Units	Contents	
	Transmission Line - Concepts of characteristic	impedance reflection coefficient

Unit 1	Transmission Line - Concepts of characteristic impedance, reflection coefficient, standing and propagating waves.		
Unit 2	Network analysis: S, Z, and other multi-port parameters, impedance matching and tuning.		
Unit 3	Planar transmission lines: Quasi-static analysis, Discontinuities, equivalent circuits.		
Unit 4	Simple printed couplers, filters, power dividers.		

- 1. Microwave Engineering D. M. Pozar, Wiley Publication
- 2. Microwave Engineering R. E. Collin, McGraw Hill Publication
- 4. 4.Select references from the Internet

Course	Computational Electromagnetics	Course No.: ESL14.R.E
Name: Credits:	04 (4-0-0)	Core/Elective: Elective
Course Detai	ls	

Units	Contents
	Finite Difference Time Domain Method,
	Variational Method,
	Moment Methods
	Finite Element Method
	Transmission line Matrix Method,
	Method of Lines.

- 1. Numerical Techniques in Electromagnetics, Matthew N. O. Sadiku, CRC Press
- 2. Any other as prescribed by Module Coordinator.

Course	Metamaterials	Course No.: ESL15.R.E
Credits: Course Details	04 (4-0-0)	Core/Elective: Elective
Units	Contents	
Unit 1	Electromagnetic waves in homogeneous material- p dielectrics, magnetic permeability, Waves scattering on	permittivity of metals and interfaces and thin slabs.
Unit 2	Introduction to Double Negative Media- Maxwell' conditions in DNG media, Scattering from DNG slal Doppler's effect and Goos-Hanchen's Effect.	s equation and boundary b, Reversal of Snell's law,
Unit 3	Metamaterial Applications: Backward wave, Negat Cloaks and Super lens.	ive refraction, Invisibility

- 1. Metamaterial, physics and engineering exploration, Nader Engheta and Richard W. Ziolkowski, John Wiley & Sons.
- 2. Electromagnetic Metamaterials: Transmission Line Theory and Microwave, Christophe Caloz, Tatsuo Itoh, John Wiley & Sons.

Course	Microelectronic Device and Circuit	Course No.: ESL16.R.E
Name:		
Credits:	04 (4-0-0)	Core/Elective: Elective
Course Details		

Unit 1	Microelectronics; Moore's Law; Semiconductor basics: Intrinsic silicon,			
	electrons, holes, charge neutrality; Doping: Donors, acceptors, compensation;			
	Charge transport: Drift, drift current density, Ohm's law, velocity saturation; IC			
	resistor: Lateral drift current, Non-linear resistor; Capacitance (interconnect);			
	Approximate passive models: Extraction; Diffusion currents.			
Unit 2	1-D Gauss's law and boundary conditions; Metal-metal capacitor layout; Charge,			
	fields, and capacitance; pn Junctions: Thermal equilibrium; Depletion			
	approximation; Potential vs. doping: The built-in potential; Charge, field,			
	potential for pn junction; pn Junctions: Reverse bias, Forward bias, and			
	Capacitance, Charge, field, potential in reverse bias: $q_J = f(v_D)$; pn Junction			
	capacitance: $C_i = dq_J / dv_D$; pn Diode in forward bias: A first pass and the i-v			
	relationship.			
Unit 3	MOS Capacitors: Surface charge in thermal equilibrium; Depletion,			
	accumulation, and inversion; $q_G = f(v_{GS})$ and $C_g = dq_G / dv_{GS}$; MOSFETs: Large-			
	signal Model, Symbols and drain characteristics; Triode and saturation regions;			

	Backgate effect MOSEET Sample & Hold Circuit Graphical analysis:		
	Analytical solution: SPICE Common Source Amplifier (Resistive Load): Large-		
	Anarytical Solution, SPICE, Common Source Ampriller (Resistive Load), Large-		
	signal transfer curve; Small-signal operation: Motivate small-signal model.		
Unit 4	MOSFET Small-Signal Model, Transconductance, including backgate output		
	resistance, capacitances, Small-Signal Analysis; Body effect; PMOS model,		
	MOSFET Current Sources (and Sinks), Diode-connected MOSFET as voltage		
	source; Current mirror concept; Audio Digital-to-Analog Converter Example,		
	Two-Port Models, Four amplifier types: Voltage, current, trans-G, trans-R tests		
	to find amplifier parameters, Common-Drain Amplifier, Voltage gain, input and		
	output resistances, Common-Gate Amplifier, Current gain, input and output		
	resistances, Frequency Response, MOSFET ac Models, Transfer functions; Poles		
	and zeroes; Bode plot techniques, Frequency Response, Phasor analysis for		
	sinusoidal steady-state signals; Bode plots, Frequency Analysis, Second-Order		
	Circuits, Amplifier Response, Unity gain frequency, gain-bandwidth product,		
	Frequency-Domain Analysis Insight & Approximations, Feedforward zero		
	Miller approximation; Method of time constants, Common Gate, Common Drain		
	Frequency Response, Multi-Stage Amplifiers: The cascode. Two-port models:		
	Current and voltage bias design; ac Analysis; Bootstrapping of gate-source		
	capacitance;		
Unit 5	Forward-Biased pn Junction, Bipolar Junction Transistor, Modes of operation of		
	a BJT; Principle of operation, Transistor action; Ebers-Moll model; Large-signal		
	model, Small-signal model; CE, CB, CC amplifiers; BJT versus MOSFET;		
	Emitter degeneration, Frequency Dependence of Input and Output Impedances,		
	Frequency response of CC amplifier; figures of merit $(g_m/I_C, f_T)$.		

Course Name:	Convex analysis and optimization	Course No.: ESL17.R.E
Credits: Course Do	04 (4-0-0) etails	Core/Elective: Elective
Unit – 1	The role of convexity in optimization, Duality theory, Al sets and functions, Epigraphs, Closed convex fun functions; Differentiable convex functions, Convex and theorem; Relative interior and closure, Algebra of re Continuity of convex functions, Closures of functions; space, Directions of recession of convex functions, Existence of optimal solutions; Nonemptiness of closed optimal solutions, Preservation of closure under linear tra	gorithms and duality; Convex ctions, Recognizing convex d affine hulls, Caratheodory's lative interiors and closures, Recession cones and lineality Local and global minima, set intersections, Existence of ansformation, Hyperplanes
Unit – 2	Review of hyperplane separation, Nonvertical hyp functions, Conjugacy theorem, Examples; Review of con common / max crossing duality, Weak duality, Special of zero-sum games, Min common / max crossing duality games, Min common / max crossing duality theorem Existence of dual optimal solutions; Min common / Nonlinear Farkas' lemma / linear constraints, Linear p programming duality, Optimality conditions; Review of o counterexamples, Fenchel duality, Conic duality; Subg Sensitivity in constrained optimization, Subdifferential ca	erplanes, Convex conjugate njugate convex functions, Min cases; Minimax problems and y for minimax and zero-sum s, Strong duality conditions, max crossing Theorem III, programming duality, Convex convex programming duality / gradients, Fenchel inequality, alculus, Optimality conditions

Unit– 3	Problem structure, Conic programming; Conic programming, Semidefinite programming, Exact penalty functions, Descent methods for convex optimization, Steepest descent method; Subgradient methods, Calculation of subgradients, Convergence; Approximate subgradient methods, Approximation methods, Cutting plane methods; Review of cutting plane method, Simplicial decomposition, Duality between cutting plane and simplicial decomposition; Generalized polyhedral approximation methods, Combined cutting plane and simplicial decomposition methods
Unit – 4	Proximal minimization algorithm, Extensions; Proximal methods, Review of proximal minimization, Proximal cutting plane algorithm, Bundle methods, Augmented Lagrangian methods, Dual proximal minimization algorithm; Generalized forms of the proximal point algorithm, Interior point methods, Constrained optimization case: barrier method, Conic programming cases; Incremental methods, Review of large sum problems, Review of incremental gradient and subgradient methods, Combined incremental subgradient and proximal methods, Convergence analysis, Cyclic and randomized component selection; Review of subgradient methods, Application to differentiable problems: gradient projection, Iteration complexity issues, Complexity of gradient proximal minimization method, Nonquadratic proximal algorithms; Gradient proximal minimization method, Nonquadratic proximal algorithms, Entropy minimization algorithm, Exponential augmented Lagrangian method, Entropic descent algorithm; Convex analysis and duality, Convex optimization algorithms

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-253-convex-analysisand-optimization-spring-2012/lecture-notes/

Bertsekas, Dimitri. *Convex Optimization Theory*. Athena Scientific, 2009. ISBN: 9781886529311. Chapter 6: Convex Optimization Algorithms

Summary of concepts and results (Courtesy of Athena Scientific. Used with permission.) chap 1-6

Additional References

1.1 Bertsekas, Dimitri, Angelia Nedic, and Asuman Ozdaglar. *Convex Analysis and Optimization*. Athena Scientific, 2003. ISBN: 9781886529458.

2 Rockafellar, Ralph. Convex Analysis. Princeton University Press, 1996. ISBN: 9780691015866.

3 Boyd, Stephen, and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004. ISBN: 9780521833783.

Course	Computational Electromagnetics	Course No.: ESL18.R.E	
Name:			
Credits:	04 (4-0-0)	Core/Elective: Elective	
Course D	etails		
Unit – 1	Introduction to CEM; General concepts in CEM; Classifica	ation of methods; Maxwell's	
	equations; Physical Boundary conditions; Preparing Max	well's equations for CEM;	
	Scaling properties of Maxwell's equations; Maxwell's	Equations Predict Waves;	
	Derivation of the Wave Equation; Solution to the Wave Equation; Fundamental Vs.		
	Intuitive Parameters; Velocity, Frequency and Waveleng	th; Refractive Index; Wave	
	Number and Wave Vector; Impedance; Dispersion relation	r; Index ellipsoids; Material	
	properties explained by index ellipsoids; Definition	of Electromagnetic Wave	
	Polarization; Orthogonality & Handedness; Polarizati	on Classification: Linear,	
	Circular & Elliptical; Poincaré Sphere; Polarization Exp	licit Form; Dissection of a	
	Plane Wave; Review of Linear Algebra; Complex	Wave Vector; TE & TM	
	Polarization; Index Ellipsoids: Electromagnetic Behavio	our at an Interface, Phase	
	matching at an interface, The Fresnel equations, Visualization	on; Image Theory	

Unit – 2	One-Dimensional Structures in Electromagnetics; Formulation of 4×4 Matrix
	Equation; Transfer Matrices; Formulation of 2×2 Matrix Wave Equation; Scattering
	Matrices for Semi-Analytical Methods; Advanced Networking Concepts; Transfer
	Matrix Method Using Scattering Matrices; Parameter Sweeps; Solid State
	Electromagnetics; Calculation Examples of Periodic Structures; Concept of
	Diffraction From Gratings; The Grating Equation; The Plane Wave Spectrum;
	Perfectly Matched Layer
Unit – 3	Finite Difference Method; Maxwell's Equations on A Yee Grid; Maxwell's Equations
	in Matrix Form; Finite Difference Analysis of Waveguides; Finite Difference
	Frequency Domain (FDFD) Formulation; Finite Difference Frequency Domain
	(FDFD) Implementation; Finite-Difference Time-Domain (FDTD); Beam Propagation
	Method; Maxwell's Equations In Fourier Space; Matrix Form of Maxwell's Equations
	in Fourier Space; Formulation of PWEM; Implementation of PWEM
Unit – 4	Rigorous Coupled Wave Analysis Formulation; Rigorous Coupled Wave Analysis
	Implementation; Method of Lines; Slice Absorption Method; Introduction to
	Variational Methods; Finite Element Method; Method of Moments for Thin Wires;
	Method of Moments with RWG; Edge Elements; Spectral Domain Method;
	Optimization; Surface Propagation Methods;

Course	Advance Electromagnetics	Course No.: ESL19.R.E
Name:	-	
Credits:	04 (4-0-0)	Core/Elective: Elective
Course D	etails	
Unit – 1	Preliminary topics in EM; Lorentz and Drude mod	lels; Nonlinear and anisotropic
	materials; Transmission lines in anisotropic media; C	Coupled-mode theory; Coupled-
	mode devices	
Unit – 2	Theory of periodic structures; Calculation examples of	f periodic structures; Diffraction
	gratings; Subwavelength gratings; Guided mode reson	ance; Introduction to engineered
	materials	
Unit – 3	Metamaterials; Photonic crystals; Homogenization a	nd parameter retrieval; Spatial
	transforms; Holographic lithography; Spatially variant	lattices
Unit – 4	Interfacing MATLAB with CAD; Frequency selective	e surfaces; Surface waves; Slow
	waves; Introduction to metasurfaces	

Web Resources

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-635-advanced-electromagnetism-spring-2003/lecture-notes/

Textbook:

Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao. *Scattering of Electromagnetic Waves*. New York, NY: John Wiley & Sons, 2001. ISBN: 0471388009

Course	Computational and system biology	Course No.: ESL20.R.E
Name: Credits:	04 (4-0-0)	Core/Elective: Elective
Course Details		

Unit – 1Genomic AnalysisDNA Sequencing Technologies; Local Alignment (BLAST) and Statistics; Global

	Alignment of Protein Sequences (NW SW PAM BLOSUM). Comparative Genomic
	Analysis of Gene Regulation: Library Complexity and Short Read Alignment
	Analysis of Gene Regulation, Elotary complexity and Short Read Anginet
	(Mapping); Genome Assembly; ChIP-seq Analysis; DNA-protein Interactions; RNA-
	sequence Analysis: Expression, Isoforms
Unit – 2	Modeling Biological Function
	Modeling and Discovery of Sequence Motifs (Gibbs Sampler, Alternatives); Markov
	and Hidden Markov Models of Genomic and Protein Features; RNA Secondary
	Structure–Biological Functions and Prediction
Unit – 3	Proteomics
	Introduction to Protein Structure; Structure Comparison and Classification; Predicting
	Protein Structure; Predicting Protein Interactions
Unit – 4	Regulatory Networks and Computational Genetics
	Gene Regulatory Networks; Protein Interaction Networks; Logic Modeling of Cell
	Signaling Networks; Analysis of Chromatin Structure; Discovering Quantitative Trait
	Loci (QTLs); Human Genetics, SNPs, and Genome Wide Associate Studies; Synthetic
	Biology: From Parts to Modules to Therapeutic Systems; Causality, Natural
	Computing, and Engineering Genomes.

Web Resources

https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biologyspring-2014/lecture-slides/

Textbook:

Zvelebil, Marketa J., and Jeremy O. Baum. Understanding Bioinformatics. Garland Science, 2007. ISBN: 9780815340249

Course	Advanced numerical methods	Course No.: ESL21.R.E
Name: Credits:	04 (4-0-0)	Core/Elective: Elective
Course Details		

Unit – 1:	Newton's Method for Root-Finding; Square Roots via Newton's Method; Square
	Roots; Floating-Point Arithmetic; Myths about Floating-Point Arithmetic; Floating-
	Point Summation and Backwards Stability; Accuracy of Naive Summation;
	Backwards Stability of Recursive Summation; Norms on Vector Spaces and
	Equivalence of Norms; Condition Numbers; Numerical Methods for Ordinary
	Differential Equations; The SVD, its Applications, and Condition Numbers; Linear
	Regression and the Generalized SVD
Unit – 2:	Solving the Normal Equations by QR and Gram-Schmidt; Modified Gram-Schmidt
	and Householder QR;Householder Reflectors and Givens Rotations; Classical vs.
	Modified Gram-Schmidt; Matrix Operations, Caches, and Blocking; Ideal-Cache
	Terminology; Cache-Oblivious Algorithms and Spatial Locality; LU Factorization
	and Partial Pivoting; Cholesky Factorization and other Specialized Solvers.
	Eigenproblems and Schur Factorizations; Eigensolver Algorithms: Companion
	Matrices, Ill-Conditioning, and Hessenberg Factorization;
Unit – 3:	The Power Method and the QR Algorithm; Shifted QR and Rayleigh Quotients;
	Krylov Methods and the Arnoldi Algorithm; Arnoldi and Lanczos with restarting;
	The GMRES Algorithm and Convergence of GMRES and Arnoldi; Preconditioning
	Techniques. The Conjugate-Gradient Method; Convergence of Conjugate Gradient;
	Biconjugate Gradient Algorithms; Sparse-Direct Solvers; Sparse Matrix Algorithms

Unit – 4:	Overview of Optimization Algorithms; A Brief Overview of Optimization
	Problems; Adjoint Methods; Adjoint Methods for Eigenproblems and Recurrence
	Relations; Trust-Regions Methods and the CCSA Algorithm; Lagrange Dual
	Problems; Quasi-Newton Methods and the BFGS Algorithm; Derivation of the
	BFGS Update; Derivative-Free Optimization by Linear and Quadratic
	Approximations
Unit – 5:	Numerical Integration, the Convergence and the Redemption of the Trapezoidal
	Rule (Fourier Cosine Series Examples); Gaussian Quadrature; Adaptive and
	Multidimensional Quadrature; The Discrete Fourier Transform (DFT) and FFT
	Algorithms; FFT Algorithms and FFTW Clenshaw-Curtis Quadrature;
	Chebyshev Approximation; Integration with Weight Functions, and

Web Resources

https://ocw.mit.edu/courses/mathematics/18-335j-introduction-to-numerical-methodsspring-2019/resource-index/