BERHAMPUR UNIVERSITY

Syllabus For M.Phil/Pre-Ph.D. in Mathematics

P.G. DEPARTMENT OF MATHEMATICS Berhampur University, Bhanja Bihar, Berhampur :-760007,Ganjam, Odisha

2023-24

Syllabus for M.Phil/Pre-Ph.D. Mathematics 2023-24

Objective of the Course: The M.Phil/Pre Ph.D is offered by the P.G. Department of Mathematics as a full time course and its main aim is to give opportunity to students to acquire knowledge or develop skills and expertise relevant to their research interest.

Semester	Name of	Name of the Paper	No. of	Marks	Remar
	the Paper		Credit	100	ks
	Code		S		End Sem:
			_		80 Marks +
					Mid Sem : 20
	MATH MPC1	RESEARCH METHODOLOGY AND	04	100	-Do-
		COMPUTATIONAL MATHEMATICS			
	MATH MPC2	BOUNDED AND UNBOUNDED OPERATORS	04	100	-Do-
	MATH MPS3	PRESENTATION OF A REVIEW REPORT (BASED	02	50	
		ON 03 IMPORTANT PUBLISHED RESEARCH			
		ARTICLES OF REPUTED JOURNALS)			
		PUBLICATION AND RESEARCH ETHICS	02	50	
	An	y one from the following Elective			
	MATH MPE1	MATRIX TRANSFORMATIONS IN SEQUENCE	04	100	-Do-
Semester-I		SPACES			
	MATH MPE2	FUNCTIONAL DIFFERENTIAL EQUATIONS	04	100	-Do-
	MATH MPE3	RELATIVITY AND COSMOLOGY	04	100	-Do-
	MATH MPE4	INVENTORY AND PRODUCTION MANAGEMENT	04	100	-Do-
	MATH MPE5	NONLINEAR FUNCTIONAL ANALYSIS	04	100	-Do-
	MATH MPE6	ANALYTIC NUMBER THEORY	04	100	-Do-
	MATH MPE7	CLASSICAL BANACH SPACES	04	100	-Do-
	MATH MPE8	LINEAR PROBLEMS AND CONVEXITY,	04	100	-Do-
		TECHNIQUES IN GEOMETRIC THEORY			
	MATH MPE9	MATHEMATICAL PROGRAMMING	04	100	-Do-
	MATH MPS 4	REVIEW OF FOUR RESEARCH PROGRESS	04	100	
Semester-II		PRESENTATION (THROUGH) PPT			
	MATH MPD1	DISSERTATION	12	300	

Detailed Course Structure

Total Credit : 32

MPC - Core Course 300 (Mandatory with no choice)

MPE- Elective 100 (Mandatory with choice departmentally)

PRO- Project 100

DISSERTATION-300

Note: Pre Ph.D students have to register for 16 credits of 400 marks to appear only Semester I, while M.Phil students have to register for 32 credits of 800 marks to appear both Semester –I & II.

DETAILED SYLLABUS

SEMESTER-I

Sub. Code: MATH MPC1		OGY AND COMPUTATIONAL EMATICS
Semester: I	Credit: 4	Core Course
Pre-requisites: Basic knowle	edge in Mathematics	
 Course Outcome: Students able to write ro To solve any kind of ma 	esearch paper. athematical equations by apply	ying mathematical models.
Unit-I	. ,	10 hours
onn-i		10 11001 5
The Basics, Topics Spec of Writing.	cific to the Writing of Mathema	itics, Exposition, Other types
Unit-II		10 hours
Computational Models, I	Basic of Algorithm, Divide and	Conquer
Unit-III		10 hours
Greedy Method, Dynami	ic Programming.	
Unit-IV		10 hours
Further Divide and Conc	quer.	
BOOKS PRESCRIBED: 1. Primer of Mathema Chapters 1, 2, 3, 4.	atical writing- Stven G. Krantz	(Universities Press
 Design Method and India) Chapters: 0, 1 	analysis of algorithms-S.K. B , 2, 3, 4, 5.	Basu (Prentice Hall of

Sub. Code: MATH MPC2	BOUNDED AND	UNBOUNDED OPERATO	RS
Semester: I	Credit: 4	Core Course	
Pre-requisites: Basic knowle	edge in Functional Ana	alysis and Linear Algebra	
Course Outcome:			
Students will be able to	understand the researc	ch on operator theory.	
Unit-I			10 hours
Test function and Distrib	outions, Fourier Transfo	rms.	
Unit-II			10 hours
Banach Algebras.			
Unit-III			10 hours
Commutative Banach Al	lgebras, Tauberian The	ory.	
Unit-IV			10 hours
Bounded operators on H	lilbert Space, Unbound	ed operators.	

BOOKS PRESCRIBED:

Functional Analysis-W. Rudin (Tata McGraw-Hill) Chapters : 6,7,8,9,10,11,12,13.

Sub. Code: MATH MPS3	SEMINAR PRESEN	TATION & RESEARCH ETHICS
Semester: I	Credit: 4	
Pre-requisites: Basic knowle	edge in Computers	
Course Outcome:		
	and citation databases,	publication misconducts, predatory open access publications, research) and plagiarism tools.

Unit-I

Introduction to philosophy: definition, nature and scope, concept, branches, Ethics: definition, moral philosophy, nature of moral judgements and reactions Ethics with respect to science and research, Intellectual honesty and research integrity, Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP),Redundant publications: duplicate and overlapping publications, salami slicing, Selective reporting and misrepresentation of data, Publication ethics: definition, introduction and importance, Best practices / standards setting initiatives and guidelines: COPE, WAME, etc, Conflicts of interest, Publication misconduct: definition, concept, problems that lead to unethical behavior and vice versa, types, Violation of publication ethics, authorship and contributorship, Identification of publication misconduct, complaints and appeals Predatory publishers and journals

Unit-II

Open access publications and initiatives, SHERP AIRoMEO online resource to check publisher copyright & self-archiving policies, Software tool to identify predatory publications developed by SPPU, Journal finder / journal suggestion tools viz. JANE, Elsevier Journal Finder, Springer Journal Suggester, etc. Subject specific ethical issues, FFP, authorship, Conflicts of interest, Complaints and appeals: examples and fraud from India and abroad, Use of plagiarism software like Turnitin, Urkund and other open source software tools, Indexing database, Citation databases: Web of Science, Scopus, etc. Impact Factor of journal as per Journal Citation Report, SNIP, SJR, IPP, Cite, Score Metrics: h-index, g index, il0 index, altmetrics.

Unit-III

Review of Literature Preparation

Unit-IV

Presentation in a seminar (review report based on review of 3(three) Important Research Papers published in reputed Journal)

REFERENCE BOOKS

- 1. Bird, A. (2006). Philosophy of Science. Routledge.
- 2. MacIntyre, Alasdair (1967) A Short History of Ethics. London.
- 3. P. Chaddah, (2018) Ethics in Competitive Research: Do not get scooped; do not get plagiarized, ISBN: 978- 9387480865
- National Academy of Sciences, National Academy of Engineering and Institute of Medicine. (2009). On Being a Scientist: A Guide to Responsible Conduct in Research: Third Edition. National Academies Press.
- Resnik, D. B. (2011). What is ethics in research & why is it important. National 6 Institute of Environmental Health Sciences, 1-10. Retrieved from https://www.niehs.nih.gov/research/resourcesibioethics/whatis/index.cfm Beall.J, (2012).
- 6. Predatory publishers are corrupting open access. Nature, 489(7415), 179-179. https://doi.orgil0.l038/489179a
- Indian National Science Academy (INSA), Ethics in Science Education, Research and Governance(2019), ISBN:978-81-939482-1-7. http://www.insaindia.res.inlpdf/Ethics Book.pdf

Sub. Code: MATH MPE1	MATRIX TRANSFO	RMATIONS IN SEQUENCE SPACES			
Semester: I	Credit: 4	Elective Course			
•	Pre-requisites: Basic knowledge in Sequence Spaces				
Course Outcome:					
Students will be able to	pursue the research o	on sequence spaces.			
Unit-I		10 hours			
Generalised Korhe-Toe	plitz Duals. Operator N	orlund means.			
Unit-II		10 hours			
Characterizations of Ma	trix Classes.				
Unit-III		10 hours			
Tauberian Theorems,Co	onsistency Theorems.				
Unit-IV		10 hours			
Mappings between sequ CA, The Bounded Consistence		gical properties of CA, the Extent of			

BOOKS PRESCRIBED

- Infinite Matrices of Operators-I.J. Maddox(Springer-Verlag)Chapters :3, 4, 5,6,7.
 Sequence Spaces : W.H. Ruckle (Pitman) Chapters : 4,5 (Sections 4,5,6, only)

Sub. Code: MATH MPE2	FUNCTIONAL DIFFERENTIAL EQUATIONS				
Semester: I	Credit: 4 Elective Course				
Pre-requisites: Basic knowledge in differential equations					
Course Outcome:					
 Students will carry on differential equations. 	the research on high	er order non homogenous delay			

Unit-I

10 hours

Uniqueness and Lipchitz conditions for ordinary differential equations, the linear equations of orders.

Linear ordinary differential systems, Introduction to delay differential equations.

Unit-III

Introduction to delay differential equation, existence theory, Linear delay-differential systems.

Unit-IV

Stability.

BOOKS PRESCRIBED

Ordinary and Delay differential Equations: R. D. Driver (Springer-Verlag) Chapters: 2,3,4,5,6,7,8.

	RELATIVITY AND COSMOLOGY			
Semester: I	Credit: 4 Elective Course			
Pre-requisites: Basic knowledge in fluid dynamics and quantum mechanics				
Course Outcome:				

Unit-I

Space-time continuum, the three plus one dimensions of space-time, the geometry corresponding to space-time, the signature of the line element and three kinds of interval, Lorentz rotation of axes, transformation to proper coordinates.

Unit-II

Riemann Christoffel Tensor, Covariant curvature tensor and its properties, Ricci Tensor, Curvature invariant, Einstein space, Bianchi's identity, Riemannian Curvature, Einstein space, Flat space, space of constant curvature, for Schur's theorem.

Unit-III

The fundamental principles of General Relativity, Principle of Covariance, Principle of equivalence, Principle of Mach, Gravitational field in empty space, Gravitational field in

10 hours

10 hours

10 hours

10 hours

10 hours

Unit-II

┝

the presence of matter and energy, Simple consequences of principle of equivalence, Newton's theory as a first approximation, The Schwarzschild line element, the three crucial tests of Relativity.

Unit-IV

Line elements for systems with spherical symmetry, static line element with spherical symmetry, Schwarzschild exterior and interior solutions, Non-static line elements with spherical symmetry-Birkoff's theorem, The generalized Lorentz electron theory the field equations, the gravitational field of a charged particle.

BOOK PRESCRIBED:

- 1. Relativity, Thermodynamics and Cosmology, R.C. Tolman ,Clarendon press, Oxford. Chapter II(Art 13-18), VI(72-75,77-83), VII(94-99,102,107)
- 2. Tensor Calculus by Bary Spain, Radha publishing House, Calcutta Chapter V

Sub. Code: MATH MPE4	INVENTORY AND PRODUCTION MANAGEM	
Semester: I	Credit: 4 Elective Course	
Pre-requisites: Basic know	ledge in Operation R	lesearch
Course Outcome:		
To solve any kind of in mathematical method	5	teriorating items by applying different

Unit-I

Deterministic Inventory Lot-Size Model with Time proportional demand. Deterministic joint replenishment policy. Inventory Control of deteriorating items (discrete and continuous).

Unit-II

Inventory Control under Inflationary Conditions. Inventory models with Stock dependent demand. Interaction of Inventory and trade credit policies. Impact of marketing policies on Inventory Decisions. Joint buyer-seller Inventory model.

Unit-III

The Distribution frees newsboy problem and its extensions. Introduction to VMI and supply Chain. Interaction of Inventory, Queues and Reliability.

10 hours

10 hours

10 hours

Unit-IV

Aggregate production Planning: Fixed and Variable Work Force Model Inventory Location Model production planning with Time Varying Demand.

REFERNCE BOOKS :

- 1. Walters, C.D.J., 2003 Inventory Control & Management, John Wiley & Sons.
- 2. Heizer, J and Render, B, 2001, Princilples of operations Management, Prentice Hall.
- 3. Zipkin, P.H. 2000, Foundatilons of Inventory Management, Mc Graw-Hill/Irwin.
- 4. NJ Bernard, P. 1999, Integrated inventory Management, John Wiley and Sons, New York.
- 5. Silver, E, Pyke, D. and Peterson, R, 1998. Inventory Management and production planning and Scheduling, John Wiley and Sons, New York.
- 6. Tony Wild, 1998, Best Practilce lin Inventory Management, John Wiley & Sons.
- 7. Bedworth and Bailey, 1987, Integrated Production Control System, John Wiley & Sons. New York
- 8. Plossl, G, 1985, Production and Inventory Control : Principles and Techniques. Prentice Hall,Englewood Cliffs,NJ.
- 9. Relevant research papers.

Sub. Code: MATH MPE5	NONLINEAR FUNCTIONAL ANALYSIS		
Semester: I	Credit: 4	Elective Course	
Pre-requisites: Basic know	ledge in Functional	Analysis	
Course Outcome:			
Students will be able t	to write research pape	er on operators on Banach Spaces.	
Unit-I		10 hours	
Preliminaries Calculus	in Banach Spaces.		

Unit-II

Monotone Operators.

Unit-III

Fixed point theorems Banach's Contraction Principle and its generalizations. Nonexpansive Mapping fixed point theorems of Brouwer and Schaudes.

Unit-IV

10 hours

10 hours

Fixed point theorems for multifunctions. Common fixed point theorems Degree theory and Condensing Operators.

BOOKS PRESCRIBED

Some topics in nonlinear functional Analysis by Joshi and Bose (Wiley-Eastern). Chapters : 1, 2, 3, 4(omit sections 4, 6, 4, 7), 5.

Sub. Code: MATH MPE6	ANALYTIC NUMBER THEORY			
Semester: I	Credit: 4	Elective Course		
Pre-requisites: Basic knowledge in number theory				
Course Outcome:				
Students will carry on	research on number th	heory.		

Unit-I

Distribution of Prime Numbers, Congruence's.

Unit-II

Finite Abelian groups and their characters, Direchlet's theorems on primes in A.P.

Unit-III

Quadratic Residues and Quadratic Reciprocity Law, Dirichlet's series and Euler Products.

Unit-IV

The functions g (s) and L (s,y,) Analytic proof of the prime Number theorem.

BOOKS PRESCRIBED

An Introduction to Analytic Number Theory- T.M. Apostol (Narosa) Chapters: 4, 5, 6, 7, 9, 11, 12, 13.

Sub. Code: MATH MPE7	CLASSICAL BANACH SPACES			
Semester: I	Credit: 4	Elective Course		
Pre-requisites: Basic knowledge in Functional Analysis				
Course Outcome:				

10 hours

10 hours

10 hours

> To solve any kind of research problems on functions spaces.

Unit-I	10 hours
Schauder Bases.	
Unit-II	10 hours
The Spaces co and Ip.	
Unit-III	10 hours
Symmetric Bases.	
Unit-IV	10 hours
Orlicz Sequence Spaces.	

BOOKS PRESCRIBED

Classical Banach Spaces-Lilnderstraws and Tzafriltil (Springer) Chapters : 1, 2, 3, 4.

Sub. Code: MATH MPE8	LINEAR PROBLEMS AND CONVEXITY, TECHNIQUES IN GEOMETRIC THEORY			
Semester: I	Credit: 4	Elective Course		
Pre-requisites: Basic knowledge in Complex Analysis				
Course Outcome:				
Students will be able to find extreme points and closed convex hulls of several classes of univalent analytic functions.				

Unit-I

Elementary properties of univalent functions, special families of univalent functions, Subordination and the Herglatz formula.

Unit-II

The linear topological structure of the set of the analytic functions, Extreme points and closed convex hulls of several classes.

10 hours

Applications to external problems. Supports point of several classes.

Unit-IV

Subordination, external point theory and Hp-spaces variability regions for families of analytic functions.

PRESCRIBED BOOKS

Linear problems and convexity techniques in geometric functions theory by D.J. Hallenbanck and T.H. Mec Gregor., Pitman.

Advanced Publishing Programme : Buston London, Melbourne 1984.

REFERENCE BOOKS:

- 1. Univalent Functions by P.L. Duren, Springer-Verlag New York (1983)
- 2. Geometric theory of functions of a complex variable by G.M. Goluzin, Translation of Mathematical Monographa, Vol, 26 Ame : Math, Soc. 1969.
- 3. Univalent Functions, Vol.I,II,III, by A.W. Goodman, Maviner Publishing Company. Tampa (1988)
- 4. Linear Operators : I Generalo Theory, Pure and Applied Mathematics. Vol.7 (1958) by N. Dunford and J.T. Schwariz.
- 5. Multivalent functional by W. K. Hayman Cambridge University Press, Cambridge(1958).

Sub. Code: MATH MPE9	MATHEMATICAL PROGRAMMING			
Semester: I	Credit: 4	Elective Course		
Pre-requisites: Basic knowledge in Operation Research				
Course Outcome:				
Students will be able to design a mathematical model and solve the problems by using different mathematical methods.				

Unit-I

10 hours

Generalized Convexity : Invexity and its generalization. F. Convex Functions and their generalization, B-Vex and Related Functions with applications to multi-objective fractional and minimax programming. Sub-gradient land Sub-Differential of Convex Function Sub-gradient Duality Necessary and Sufficient Optimality Conditions for MONLPP in term of Sub-gradients.

10 hours

Complementarity Problem : Liner Complementarity problem, Equivalence of LPP and I.C.P. Equivalence of OPP and LCP, Equivalence of LCP and problem of finding equilibrium points of Bimatrix game.

Non-Linear Complementarity, Generalized LCP and its equivalence to Multi objective Programming Problem.

Unit-III

Goal Programming : Formulation of Goal Programming Models, Methods of Solution for Goal and Multi-Objective programming Goal Programming with Linear Fractional Objective Function.

Unit-IV

Fuzzy Programming : Concept of Fuzziness in Objective Function or Constraint Functions or Both in LPP and NLPP. Interior Point Methods for Solving Linear Programming Problem.

PRESCRIBED BOOKS

- 1. Clarke, F.H, Ledyaev yu. S. Stern. R.J. Wolenski P.R, "Non-Smooth Analysis and Control Theory", Springer.
- Cottle R.W., Pang J.S. and Stone RE (1992) "Linear Complementarity", Academic Press N.Y.
- 3. Ignizio, J.P,"Linear Programming in Single and Multiobjective System", Prentice-Hall, Englewood Cliffs, N.Y.
- 4. Ignizio,J.P.,"Goal Programming A Tool for Multiobjective Analysis", Vol.29,No-2,1109-1119(1978).
- 5. Zeleny, M. "Linear Multiple Objective programming", Lecture Notes iln Economics and Math, Systems, Springer, Berlin.
- 6. Murty, Linear programming-'Interior Point Methods'.

SEMESTER-II

Sub. Code: MATH MPS4	REVIEW OF RESEARCH PROGRESS (THROUGH) PPT			
Semester: II	Credit: 4			
Pre-requisites:				
Course Outcome:				
Students will be able to write a research paper.				

Unit-II

10 hours

Unit-I

Presentation on Research proposal (overall).

Unit-II

Presentation on review of literature on the Dissertation topic.

Unit-III

Presentation on methodology and plan of research finding.

Unit-IV

Presentation of final dissertation or Pre-submission of dissertation.

NB: Four presentations based on the dissertation carrying 01 credit per presentation to be presented every month during the period of writing the dissertation.

EVALUATION: The candidate has to present his/her work before the Dept. RAC periodically and submit a report at the end of each presentation. The Dept. RAC will evaluate each report and send the overall grade secured by the candidate along with the Dissertation to the Controller of Examination at the end of the 2nd semester.

PAPER- MATH MPD1

Dissertation : 12 Credits