COURSE OF STUDY

MASTER OF ARTS / MASTER OF SCIENCE IN ENVIRONMENT STUDIES

(M.A. / M.Sc. in Environment Studies)

Effective from Academic Year 2022 - 2023 & For the Academic Batch 2022 - 2024

Department of Environment Studies

BERHAMPUR UNIVERSITY Bhanja Bihar – 760007 Odisha, India

M.A. / M.Sc. in Environment Studies Syllabus (course outline) as finalized by the Board of Studies (vide office notification dated 12 August 2022) in its 2nd meeting held on 16 August 2022

M.A./M.Sc. in Environment Studies

Course Curriculum & Syllabi (Outline) - 2022 Department of Environment Studies, Berhampur University

1. About the Department

The history of the Department of Environment Studies (DES) goes back to 2018 when its earlier avatar – the Department of Natural Resources Management and Geoinformatics (NRMG) was established in the erstwhile Khallikote University, Berhampur. Initially the department had an interdisciplinary focus offering Master (M.A./M.Sc.) and Ph.D. degrees in Khallikote University. After the amalgamation of Khallikote University with Berhampur University, a major academic restructuring exercise was carried out, and in Berhampur University while maintaining the interdisciplinary nature, the present Department of Environment Studies was created in the year 2021. Presently, this is the only University in the state which offers Post Graduate and Doctorate degree in the subject of Environment Studies. The genesis for such a department was to produce quality manpower in the field of Environment and Sustainability both through teaching and R&D activities, to meet the aspirations of the state as well as the country. Presently, the Department has the following 05 faculty members:

- Dr B. Anjan Kumar Prusty, Associate Professor & Head
- Dr Bikram Sen Sahu, Assistant Professor
- Dr Kabita Baral, Assistant Professor
- Dr Santosh Kumar Beja, Assistant Professor
- Dr Rachna Panda, Assistant Professor (Guest Faculty)

2. About the Post Graduate Programme

Presently, the Department of Environment Studies offers M.A./M.Sc. in Environment Studies and Ph.D. in Environment Studies. Conducting the Post Graduate Programme is one of the approaches of disseminating the knowledge of environmental management and ecosystem conservation and helping in human resource development in the field is one of the major objectives of the Department of Environment Studies. The prime aim of this Post Graduate (M.A./M.Sc.) Program is to initiate a course which is different from the courses on Environmental Sciences being offered by many other universities. This course will address the need for better environmental management and sustainable development utilizing the expertise of the faculty members.

The Post Graduate Degree is offered as M.A./M.Sc. in Environment Studies. A prospective student to the Programme must have an undergraduate degree (Physical Science, Chemical Science, Biological Science, Agricultural Science, Engineering, Geography, Anthropology or Economics) from any recognized University/institution with minimum of 45% marks in aggregate, and with science at 10+2/senior secondary level. The admission to 30 seats for this PG Programme is through the Common PG Entrance Test (CPET) as conducted by the

Department of Higher Education, Government of Odisha. The Courses of Studies for M.A./M.Sc. in Environment Studies are under Choice Based Credit System (CBCS) effective from the academic session 2022-2023. The Syllabus has been designed covering practical/dissertations/field works/seminars, etc., wherever applicable. A list of Text Books and Reference Books (as applicable) is provided against each paper for all the Semesters. However, students may also make use of authentic online sources for their benefit. A student is advised to deliver at least one seminar talk on a selected topic (research articles published in peer-reviewed journals) based on the syllabus during each semester (weekly-at least one Seminar by one of the students, to cover all students). During the course work, students are allowed to interact with the faculty to clarify their doubts, if any. The assessment pattern includes, internal tests, end of semester examinations, field study reports, assignments, and major project works, as appropriate.

3. Programme Outcome

The M.A. /M.Sc. in Environment Studies is a 02-year curriculum spanning over 04 semesters. The course is designed to equip the students with the ability to develop understanding on real-world environmental problems, and approaches to address such issues and challenges in environmental management. The course covers a good mix of both theoretical as well as practical components so that students can gain in-depth understanding of the tools and techniques widely used in environmental management in both industry, field and society, and at the same time develop good analytical, computational and geo-spatial skills in analyzing different environmental issues that the planet earth has been facing in this century. At the end of the course, the students shall have both theoretical and practical knowledge on the core issues of Environment and Sustainability. They would also acquire general orientation and better understanding on all important aspects of Environment Studies, including (i) Ecosystem Ecology, (ii) Environmental Pollution, (iii) Forest and Wildlife Conservation, (iv) Environmental Economics and Ecosystem Evaluation, (v) Environmental Impact Assessment and Auditing, (vi) Hydrology and Water Resource Management, (vii) Disaster Management, (vii) Global Climate Change, (viii) Environmental Geosciences, (ix) Sustainable Agriculture and Food Security issues, and (x) Tools and Techniques of Environmental Monitoring (including analytical, computational, ecological, statistical, and geo-spatial tools).

Snapshot of Credits (Semester wise)

Semester	Stream	Courses	Credits	Marks
1 st Semester	Common for both M.Sc. and M.A. Stream	06 core courses of 04 credits each (05 theory and 01 practical)	24	600
2 nd Semester	Common for both M.Sc. and M.A. Stream	06 core courses of 04 credits each (05 theory and 01 practical) and 01 Value Added Course (Non-credit)	24	600
3 rd Semester	Both Common and Specialized Courses specific to M.Sc. and M.A. Stream	06 core courses of 04 credits each (02 core courses are common for both M.Sc. and M.A. Stream and 02 electives to be chosen from the 04 electives (stream specific), 01 Inter- departmental Elective (CBCT), 01 practical/field study/tutorial/assignments), and 01 Value Added Course (Non-credit)	24	600
4 th Semester	Both Common Course and Major Project Work (dissertation)	04 core courses of 04 credits each (common for both M.Sc. and M.A. stream) and 01 dissertation: major project work equivalent to 02 core courses)*	24	600
	Total Credits 96			2400
* The dissertation / major project work shall be equivalent to 02 core courses (08 credits)				

List of Courses (Papers)

SI No.	Paper Code	Title	Credits	Internal Marks	End Sem Marks	Total marks
	Se	mester - I (Common for both M.	Sc./M.A	. Stream)		
1	ENVS C-101	Fundamentals of Earth System Science	04	20	80	100
2	ENVS C-102	Ecology and Ecosystems	04	20	80	100
3	ENVS C-103	Remote Sensing and GIS for Environment Studies	04	20	80	100
4	ENVS C-104	Environment and Society	04	20	80	100
5	ENVS C-105	Sustainable Water Management	04	20	80	100
6	ENVS P-106	Lab Practical – I: Based on the above	04	0	100	100
		papers (Environmental Monitoring and Computational Lab-I)				
7*		Student Seminar (Departmental Journal Club)*				
		Semester-I Total	24	100	500	600
	Se	mester - II (Common for both M.	Sc./M.A	. Stream))	
8	ENVS C-201	Natural Resource Management and Governance	04	20	80	100
9	ENVS C-202	EIA, Auditing & EMS: Tools and Techniques	04	20	80	100
10	ENVS C-203	Statistics and Computer Applications for Environment Studies	04	20	80	100

SI	Paper Code	Title	Credits	Internal	End Sem	Total
No.				Marks	Marks	marks
11	ENVS C-204	Wetland: Ecology, Restoration and	04	20	80	100
12		Matagement	04	20	<u>۹</u> ۵	100
12	ENVS 0-205	Lab Practical – II: Based on the above	04	20	100	100
13		papers (Environmental Monitoring and	04	0	100	100
		Computational Lab-II)				
14	ENVS VAC-207 [#]	Value Added Course	NC	20	80	100
15*		Student Seminar (Departmental Journal				
		Club)*				
16 ^{\$}		Summer Internship (Industrial Visits or visit to different organizations/research				
	<u> </u>	emester - Il Total	24	100	500	600
		entester - III (Both Common and Cr	24		-)	000
6	Sen	hester - III (Both Common and Sp	ecialized	a Courses	5)	
			04	20	00	100
1/	ENVS C-301	Environmental Geosciences	04	20	80	100
18	EINVS C-302		04	20	80	100
spec			04	20	00	100
19	EINVS E-303	Elective II	04	20	80	100
20		Lab Practical – III: Pased on the above	04	20	100	100
21	EINV3 P-303	handra (Environmental Monitoring	04	0	100	100
		Geological and Geo-informatics Lab-III)				
Spec	Specialized Courses: Arts Stream (M_A_)					
22	ENVS E-303	Elective - I	04	20	80	100
23	ENVS E-304	Elective - II	04	20	80	100
24	ENVS P-305	Field Study/Tutorials/Assignments:	04	0	100	100
		Based on the above papers (FS/Tu/As)				
Com	mon Courses					
25	ENVS CT-300**	CBCT course (Interdisciplinary	04	20	80	100
		Elective)**				
26	ENVS VAC-307 [#]	Value Added Course	NC	20	80	100
27		Student Seminar (Departmental Journal Club)				
	S	emester - III Total	24	100	500	600
	Sei	mester - IV (Common for both M	Sc /M A	Stream)	
28	ENVS C-401	Disaster Management	04	20	80	100
29	ENVS C-402	Environmental Law	04	20	80	100
		(Acts, Notifications and Conventions)				
30	ENVS C-403	Forest and Wildlife: Ecology and	04	20	80	100
		Conservation				
31	ENVS C-404	Coastal Zone Management	04	20	80	100
32	ENVS C-405***	Major Project Work	08	40	160	200
33	ENVS AC-406##	Cultural Heritage of South Odisha	NC	10	40	50
	Semester - IV Total			100	500	600
		Grand Total	96			2400

Selection of Elective Courses

The Department offers a basket of Elective Papers offered during 3rdsemester to select students their own choice of specializations. The students can choose 01 elective paper from each elective cluster of 02 papers (total 02 elective papers) in 3rdsemester. Further, out of 05 CBCT papers (in the cluster), the students have to opt one paper offered by the Departments other than the Department of Environment Studies.

Science Stream (M.Sc.)

ENVS E-303: Elective – I

- A. Environmental Chemistry and Analytical Tools
- B. Environmental Modeling

ENVS E-304: Elective – II

- A. Environmental Pollution
- B. Mining and Environment

Arts Stream (M.A.)

ENVS E-303: Elective – I

- A. Environment and Resource Economics
- B. Sustainable Agriculture and Food Security

ENVS E-304: Elective – II

- A. Natural Resource Conflicts and Choices
- B. Sustainable Urban Planning

** CBCT (Inter Disciplinary Elective) Papers (Students have to Choose one of the following courses except ENVS-CT-300)

- BIOT-CT-300: Biotechnology in Human Welfare (Offered by Dept. of Biotechnology)
- BOTA-CT-300: Economic Botany (Offered by Dept. of Botany)
- ENVS-CT-300: Population and Environmental Issues (Offered by Dept. of Environment Studies)
- MARB-CT-300: Environmental Impact Assessment (Offered by Dept. of Marine Science)
- ZOOL-CT-300: Conservation Biology (Offered by Dept. of Zoology)

[#] Value Added Course (VAC): ENVS-VAC-207 and ENVS-VAC-307

- ENVS VAC-207: Value Added Course
 - A. Mineral Beneficiation and Value Addition Process
 - B. Environmental Ethics

ENVS VAC-307: Value Added Course

- A. Waste Management
- B. Bioresources for Livelihood Development

Guidelines for conducting value added courses (VAC)

Value Added Course is not mandatory to qualify for any programme and shall be offered as non-credit course in the 2nd and 3rd semester. It is a teacher assisted learning course open to students of the concerned department and the students shall register along with other courses in that semester. Classes for a VAC can be reflected in the timetable. The value-added courses may be also conducted during weekends / vacation period. A student will be permitted to register only one Value Added Course in a Semester. The course can be offered

only if there are at least 10 students opting for it where the total strength is 50. In case of lower strength, it will be proportionate.

Duration: The duration of value-added course is 30 hours with a combination 18 hours (60%) of theory and 12 hours (40%) of practical. However, the combination of theory and practical shall be decided by the course teacher with the approval of the Head of the Department.

^{##}Add On Course (AC):

ENVS-AC-406: Cultural Heritage of South Odisha

Code Used

BIOT- Biotechnology, **BOTA-** Botany, **ENVS-** Environmental Studies, **MARB-** Marine Biology, **Zool-** Zoology **C-** Core, **E-** Elective, **S-**Seminar, **P-** Practical, **D-** Dissertation, **CT-**Interdisciplinary

Elective (Choice Based Credit Transfer), VAC- Value Added Course, AC- Add On Course, NC-Non-Credit course

^{*} Student Seminar (Departmental Journal Club)

Each student has to present a research article in the departmental journal club in 1^{st} , 2^{nd} , and 3^{rd} semester. Further details on this are provided in the respective sections.

^SSummer Internship Programme

All the students shall have to undergo a summer internship programme in (i) industries, (ii) different organizations (NGOs or civil society organization working on environmental issues) and (iii) research institutions. Further details on this are provided in the respective sections.

*** Major Project Work

All the students shall have to choose one supervisor (from among the faculty members of the department) and design a research work (in consultation with and under the supervision of the supervisor) to be carried out. Further details on this are provided in the respective sections.

Mode of Course Delivery:

Regular classroom teaching, Field/Lab Practical, Study tours, value addition through guest/invited lectures (physical lectures and webinars).

SEMESTER- I

1. ENVS C-101: Fundamentals of Earth System Science (Core Course, 04 Credits)

Course outcomes:

- Understanding the earth formation and earth processes.
- Understanding on the ocean system
- Learning about atmospheric conditions and climatology

ENVS C-101	Fundamentals of Earth System Science	Credits: 04		
Unit 1:	Solar system and Origin of the Earth and other pla	anetary bodies. Earth's		
Understanding the	orbital parameters, Kepler's laws of planetary m	orbital parameters, Kepler's laws of planetary motion; Geological Time		
Earth	Scale; Age of the Earth, seismology and internal structure of earth,			
(12 Lectures)				
Unit 2:	Plate tectonics, plate boundary (convergent, div	vergent and transform		
Introduction	boundary), weathering, erosion, transportatio	on and deposition of		
toEarth Processes	Earth's material, geomorphic processes and ager	nts.		
(12 Lectures)				
Unit 3: Physical	Morphology and tectonic domains of the ocea	an floor. Physical and		
Oceanography	chemical properties of seawater; Ocean currer	nts, important current		
(12 Lectures)	systems, Air-Sea interaction; Thermohaline circ	culation, El Nino and		
	monsoon system.			
Unit 3: Biological	Classification of marine environment and organi	sms, physcio-chemical		
and Chemical	factors affecting marine life, ocean produ	ctivity (primary and		
Oceanography	secondary), energy flow and biogeochemical cyc	les.		
(12 Lectures)	Composition of sea water, classification of e	elements (major and		
	minor), behavior and chemical exchanges, reside	ence time		

Text Books

- 1. McBride N and Gilmour I (Eds.) (2004). An Introduction to the Solar System. Cambridge, UK: Cambridge University Press.
- 2. Lal DS (1986). Climatology, Chaitanya Publication, Allahabad.
- 3. Trujjilo AP and Thurman HV (2011). Essentials of Oceanography (10thEdition). Prentice Hall.
- 4. Condie, Kent. C. (1989). Plate Tectonics and Crustal Evolution. 3rd Edition. Butterworth-Heinemann Ltd.
- 5. Summerfield M.A (2011). Geomorphology and Global Tectonics, Wiley India Pvt Ltd.

- 1. Siddhardha K (2016). The Earth's Dynamic Surface A book of Geomorphology, Kitab Mahal.
- 2. Windlley B (1995). The Evolving Continents. 3rd Edition Wiley-Blackwell.
- 3. Davies, G.F. (1999). Dynamic Earth: Plates, Plumes and Mantle Convection. Cambridge University Press.
- 4. Barry and Chorley (1988). Atmosphere weather and climate, Routtledge, London,

2. ENVS C-102: Ecology and Ecosystems (Core Course, 04 Credits)

Course outcomes

- Understanding the ecological systems and organisms' adaptations
- Understanding the concepts of species, population and community in different habitats
- Understanding the community dynamics and succession in ecosystem
- Understanding the bio-geo-chemical cycling processes on earth

ENVS C-102	Ecology and Ecosystems	Credits: 04	
Unit 1: Fundamentals	Ecology: Scope and Evolution, concepts and sub-divisions.		
(Organism and	Concept of stress and strain, adaptation a	and limiting factors;	
Environment	morphological, anatomical and physiolog	gical responses of	
Interactions)	organisms to light, temperature, water and	d salinity; soil-plant-	
(12 Lectures)	atmosphere continuum.		
Unit 2: Ecosystem	Systems concept, ecosystem structure and fu	nctions, primary and	
Ecology	secondary production, food chain and trop	hic levels, ecological	
(12 Lectures)	energetic, material cycling, homeostasis and fe	edback.	
Unit 3: Population	Basic concepts, population characteristics, p	opulation dynamics,	
Ecology	population growth, carrying capacity and envir	ronmental resistance,	
(12 Lectures)	population regulation, life history strategies	(r and K selection),	
	population fluctuation, population interactions	5.	
Unit 4: Community	Definition, origin and development, characted	eristics, composition,	
Ecology and Dynamics	structure, stratification, and factors.		
(12 Lectures)	Ecological succession: Background, causes, tr	ends, types, process,	
	hydrosere, lithosere, heterotrophic suc	cession, ecosystem	
	development, climax concept and biome		

Text Books

- 1. Dash MC (2001). Fundamentals of Ecology, 2nd Edition. Tata McGraw-Hill Publications.
- 2. Gotelli, Nicholas J. 2008. A Primer of Ecology, 4th Edition. Sinauer.
- 3. Mackenzie A, Ball AS and Virdee SR (2002). Instant Notes in Ecology. 2nd Edition. Viva Books Pvt. Ltd. New Delhi.
- 4. Odum EP and Barett GW (2017). Fundamentals of Ecology, 5th Edition. Cengage.
- 5. Sharma PD (2000). Ecology and Environment. 7th Edition. Rastogi Publications, Meerut, India.

- 1. Edwards AR, Andres R. 2005. The Sustainability Revolution: Portrait of a Paradigm Shift. New Society.
- 2. Primack, Richard B. 2010. Essentials of Conservation Biology, 5th Edition. Sinauer.
- 3. Sttiling, Peter. 2001. Ecology: Theories and Applications, 4th Edition. Prentice Hall.
- 4. Rogers, Peter P., Kazi F. Jalal, and John A. Boyd. 2007. An Introduction to Sustainable Development. Earthscan.

3. ENVS C-103: Remote Sensing and GIS for Environment Studies (Core Course, 04 Credits)

Course outcomes:

- Understanding the basic concept of Remote Sensing and GIS
- Processing the remote sensing and GIS data
- Understanding on the approach for identifying and solving the geospatial problems

ENVS C-103	Elements of Geoinformatics	Credits: 04	
Unit 1:	Concept and Scope of Remote Sensing	, Electromagnetic Radiation	
Introduction to	(EMR): Spectrum, Wavelength, Frequence	y, Energy, EMR wavelength	
Geoinformatics	regions and their applications, Interaction	of EMR with matter, Spectral	
(12 Lectures)	signatures.		
Unit 2:	Sources of Energy, Radiation laws (Stefar	n-Boltzman; law, Wien's law,	
Fundamental of	Kirchhoff's law), Black body and Real bo	ody, Radiant temperature &	
Remote Sensing	Kinetic temperature; Energy Interaction in	the atmosphere (Scattering,	
(12 Lectures)	absorption, transmission, atmospheric windows); Energy Interactions		
	with Earth Surface Features (Spectral Re	flectance Curve, Concept of	
	signatures).		
Unit 3: Elements	Definition of GIS, Concept of Space ar	d Time, Spatial data, Map	
of GIS	Projection and Datum, Domains of S	patial information system,	
(12 Lectures)	Components of GIS, GIS Functionalities for end user / system - Data		
	Acquisition, Data Input, Data Management		
Unit 4: GIS Data	Data Analysis, Data Modeling and Data C	output; Geodata visualization	
Analysis	and analysis - two - three - fourth dimension viewing - viewing by		
(12 Lectures)	animation - Visualization by hyper map - vi	rtual images – web GIS	

Text Books

- 1. Godchild M. Fand Kemp K (1990). Developing a curriculum in GIS: The NCGIA Core curriculum project, University of California, Santa, Barbara.
- 2. Ian Haywood Cornelius and Steve Carver (2000). An introduction to GIS, Longman, New York.
- 3. Misra H.C. (1995). A Handbook on GIS, GSI India, Hyderabad.
- 4. Smith T.R. and Piquet (1985). GIS, London Press, London.

Reference Books

- 1. Taylor DRF (1991). GIS: The Micro computer and Modern Cartography, Pergamon Press, Oxford.
- 2. Ian Heywood, Sarah Cornelius and Steve Carver (1998). An Introduction to Geographical Information System, Longman, New Delhi.
- 3. Lo CP and Young AKW (2006). Concepts and Techniques of Geographical Information System. 2nd Edition. Pearson.

4. ENVS C-104: Environment and Society (Core Course, 04 Credits)

- Understanding concepts, theories, debates, and empirical practices on the interaction between environment and society
- Understanding different issues of environmental issues
- Evaluates policies and practices concerning environmental governance and sustainable development

ENVS C-104	Environment and Society Credits: 04
Unit 1:	Background, Demographic transition (India and World, Projections of
Population and	population growth), Resource scarcity, Unsustainable lifestyle – increased
Environment	consumerism; Theoretical Approaches (deep, social, political-economy, and
(12 Lectures)	feminist).
Unit 2: Energy	Classification of Energy Resources; Changing Nature of Demand for Energy;
Crisis and	Energy crises: past and present, Alternatives sources of energy, energy
Society	geopolitics
(12 Lectures)	
Unit 3:	Environmental Degradation: Factors, Air Pollution, Water Pollution, Soil
Environmental	pollution, Waste management (Solid waste and Hazardous waste);
Degradation	Environmental degradation linkage with social dynamics (race, class, caste,
and Society	gender and age groups)
(12 Lectures)	
Unit 4:	Evolution of Discourses on development and concept of sustainable
Environment	development goals (SDG); emerging discourses (participatory governance,
and Sustainable	green economy and Radical Ecological democracy).
Development	
(12 Lectures)	

- 1. Carolan M (2018). Society and Environment: Pragmatic Solution to Ecological Issues Routledge. New York.
- 2. Harris, P.G. and G. Lang (2015). Routledge Handbook of Environment and Society in India. Routledge. New York.
- 3. Maldondo, M (2015). Environment and Society. Socio-natural relations in the anthropocene. Springer.

Reference Books

- 1. Pretty, Jules, Andrew Ball (2007). "Introduction to Environment and Society." In: *The Sage Handbook of Environment and Society*. Sage Publications. ISBN: 9781412918435
- 2. Paskal, Cleo (2009). The Vulnerability of Energy Infrastructure to Environmental Change. Chatham House.
- 3. Pamela Chasek and David Downie (2016).*Global Environmental Politics, Seventh Edition*, Westview Press.
- 4. Baumol, W.J. and Oates W.E.(1988) : Theory of Environmental Policy, 2nd Edition, Cambridge University Pres
- 5. Cunningham WP and Cunningham MA (2002). Principles of Environmental Science: Inquiry and Applications. McGraw Hill Publications, New Delhi, 418 pp.
- 6. McKillop A and Newman S (2005). The Final Energy Crisis. Pluto Press, London. 325 pp.

5. ENVS C-105: Sustainable Water Management (Core Course, 04 Credits)

- Understanding the water distribution pattern on earth and water bearing properties in different rock types.
- Understanding different quality parameters and their relevance for water utilization.
- Understanding the threats, conflicts, and management of water resources.

ENVS C-105	Sustainable Water Management Credits: 04	
Unit 1: Water	Water on the earth; Hydrological cycle and water resource	
Resources	distribution (vertical and spatial), Type of water resources and water	
(12 Lectures)	levels (Global and regional scenario), Interrelation between	
	hydrological processes in different spheres	
Unit 2:	Water-bearing properties of rocks (porosity, permeability, specific	
Hydrogeology and	yield and specific retention); Classification of rocks according to their	
Groundwater	water-bearing properties; Water table and piezometric surface;	
Hydraulics Geologic and geomorphic controls on groundwater; Darcy's		
(12 Lectures)	(applications and validation)	
Unit 3: Water	Physical and chemical properties of groundwater; Quality criteria for	
Quality Monitoring	different uses; Groundwater and surface water contamination;	
(12 Lectures)	geogenic and anthropogenic contaminants; graphic representation	
	of chemical data; sea-water intrusion.	
Unit 4: Threats,	Water scarcity and water stress regions (Global and Regional),	
Stressors and	Groundwater problems, Rain water Harvesting, Artificial recharge,	
Managementon	Solution to water scarcity (Desalination, Industrial recycling of water,	
water resources	wastewater reclamation, Canal, Dams and Reservoirs)	
(12 Lectures)		

- 1. Todd, D.K. (1988). Ground Water Hydrology, John Viley& Sons, New York.
- 2. Davies, S.N. and Dc-West, R.J.N. (1966). Hydrogeology, John Villey& Sons, New York.
- 3. Biswas, A. K. (2007). Water resources: Environmental Planning, Management, and Development, McGraw-Hill, New Delhi.
- 4. Chatterjee, S.N. (2008). Water Resources, Conservation And Management, Atlantic Publishers & Distributors.

Reference Books

- 1. Hiscock, K.M. and Bense, V.F. (2014). Hydrogeology: Principles and Practice 2nd Edition, Wiley-Blackwell
- 2. Raghunath, H.M. (1983). Ground Water, Viley Eastern Ltd., Calcutta
- 3. Vedula, S., P. P. Majumdar (2007). Water Resources Systems modeling techniques and analysis.
- 4. Elizabeth, M. Shaw, Keith J. Beven, Nick, A. Chappel, RobLamb (1994). Hydrology in Practice, John Willey and Sons, New York.

6. ENVS P-106: EVS Lab Practical – I: Based on the above papers (Practical: Core Course, 04 Credits)

- Hands on experience on titration and different basic instruments for environmental monitoring, *viz.*, pH meter, TDS meter, nephelometer.
- Learning different basic analytical tools and techniques of environmental monitoring.
- Experiences different field measurements

ENVS P-106	Environmental Monitoring, Geoinformatics & Computational Lab - I	
Unit 1: Rectification	Rectification using GPS data, image to image rectification, keyboard	
and Digitization	entry rectification - setting projections - GIS database design,	
(12 Sessions)	Digitization of point line and polygon, Spatial and attribute data entry	
	and editing and their integration	
Unit 2: Analysis Tools	Measurement - Buffer – overlay – network analysis – surface	
(12 Sessions)	interpolation – reclassification – TIN – DEM– distance tools	
Unit 3: Water Quality	Determination of various basic parameters in surface water/	
Analysis	groundwater / marine water/ wastewater (pH, Electrical Conductivity,	
(12 Sessions)	Alkalinity, Salinity, Turbidity, Hardness and Dissolved Oxygen)	
Unit 4: Measurement	Minimum size of the quadrat following Species-Area Curve method;	
of Ecological Attributes	Minimum number of quadrats to be laid down in the field; Animal	
(12 Sessions)	Census Techniques (Mammals, Birds, Herpetofauna); Identification and	
	Sampling Methods for Plankton, Nekton and Benthos	
Note: The experiments should be conducted based on the availability of resources		
infrastructure		

- 1. APHA, AWWA and WEF (2017). Standard methods for examination of water and wastewater. 23rd Edition. American Public Health Association, American Water Works Association, Water Environment Federation.
- 2. Saxena MM (1990). Environmental Analysis: Water, Soil and Air. 2nd Edition. Agro Botanical Publishers, Bikaner, India.
- 3. Bibby CJ, Burgess ND, Hill DA and Mustoe S (2000). Bird Census Techniques. 2nd Edition. Academic Press.
- 4. Sutherland WJ (2006). Ecological Census Techniques: A Handbook. 2nd Edition. Cambridge University Press. 432 pp.
- 5. Lo CP and Yeung AKW (2006). Concepts and Techniques of Geographic Information Systems, Prentice-Hall of India, New Delhi.
- 6. Misra RP and Ramesh A (2002). Fundamentals of Cartography, Concept Publishing Company, New Delhi.

Reference Books

- 1. Cartwright W and Gartner GA (Eds.) (2009). Cartography and Art, Springer Verlag Berlin, Heidelberg.
- 2. Anji Reddy M (2004). Geoinformatics for Environmental Management, BS Publications, Hyderabad.
- 3. Kraak M-J and Ormeling F (2005). Cartography Visualization of Geospatial Data, Pearson Education Pvt ltd, New Delhi.

7. Student Seminar (Departmental Journal Club)

All the students shall be instructed to present a research article published in peer reviewed journals with necessary supervision and guidance from faculty members. The evaluation shall be out of 10 marks, and the said mark shall be reflected as one of the components in the end-term practical paper.

SEMESTER-II

8. ENVS C-201: Natural Resource Management and Governance (Core Course, 04 Credits)

Course Outcomes

- Understanding the basic concepts and approaches
- Understanding emerging issues on environmental/resource management
- Assessing the challenges of past and present nature of developmental trajectory with limited supply of natural resources

ENVS C-201	Natural Resources Management and Governance	Credits: 04	
Unit 1: Concepts &	Defining relevant concepts (natural resources,	resistance, and	
Theories	natural stuffs); Theories of conceptualizing n	atural resources	
(12 Lectures)	12 Lectures) (classical and neo classical); Classification of Natural Reso		
	concept of renewability in a limited world.		
Unit 2: Natural	Conceptualizing Resource Scarcity (Traditiona	l theories- and	
Resource Scarcity	Resource Scarcity Political-economy perspective), Indicators of Resource Scarcity		
(12 Lectures)			
Unit 3: Resource	Key Philosophy and approaches (Evolution;	Top-Down and	
Governance Theories	Bottom-up approach; Bureaucratic Approach a	nd Participatory	
and Practices	Approach); State, resource, and citizens: Hare	din's tragedy of	
(12 Lectures)	Common, Community Based Natural Resource Ma	inagement	
Unit 4: Uneven	Regional Development; Resource abundance; Re	egional Disparity,	
Development and	Resource Curse Theory; Geo-politics: Resource V	Var and resource	
Resource Conflicts	conflict.		
(12 Lectures)			

Text Books

- 1. Guha R (2004). Social ecology. New Delhi: Oxford University Press
- 2. Ostrom, E. (1990). Governing the commons: The evolution of institution for collective action. Cambridge: Cambridge University Press.
- 3. Rees J (1958). Natural Resources: Allocation, Economics, and Policy. Methuen. London and New York.
- 4. Malthus TR (1798). An essay on the principle of population. London. J. Johnson.

- 1. Ascher W(1999). Why Governments Waste Natural Resources: Policy Failures in Developing Countries. Baltimore: The John Hopkins Univ. Press.
- 2. Auty RM (2001). Resource Abundance and Economic Development. Oxford: Oxford University Press.
- 3. Bryant, R. & Bailey, S. (1997). Third world political ecology. London: Routledge.
- 4. Johnston, R. J. (1996). Nature, State, and Economy: A political economy of the environment. Chichester: John Wiley.
- 5. Pretty, J; Ball, A. S. (2007). The Sage handbook of environment and society. Sage Publication: NewDelhi
- 6. Robbins, Paul; Hintz, John and Sarah A. Moore (2014) Environment and Society: A Critical Introduction, Wiley-Blackwell

9. ENVS C-202: EIA, Auditing & EMS: Tools and Techniques (Core Course, 04 Credits)

Course Outcomes

- Understanding on the concept of EIA and Prior-environmental clearance process in India
- Understanding on the EIA and CRZ Notification vis-a-vis developmental projects
- Understanding on the next-generation EIA processes and their advantage over the classical techniques.
- Understanding on the Environmental Auditing process and management systems adopted in different industries.

ENVS C-202	EIA, Auditing & EMS: Tools and Techniques Credits: 04
Unit 1: EIA Overview	Concepts and evolution of EIA, types of EIAs, Procedures for
(12 Lectures)	undertaking EIAs (Data requirement, collection and acquisition, Public
	concerns, Strategies, Steps in EIA), Environmental Impact Statement
	and Environmental Management Plan (EMP)
Unit 2: Legal	Environmental Protection Act 1986, Environmental Impact Assessment
Instruments and	(EIA) Notification (1994, 2006 and 2020); Environmental Clearance
Notifications	Process in India, Post Environmental Clearance Monitoring, and Coastal
(12 Lectures)	Regulation Zone Notification (1991 and 2018).
Unit 3: Next-Gen EIAs	Cumulative Impact Assessments, Strategic Impact Assessments
(12 Lectures)	(Concept, difference between SIA and EIA, Methods of SIA, Public
	Involvement, and Guidance and Good Practices), and Carrying Capacity
	Assessment (Concepts and Methods)
Unit 4:	Background & definition, Goals, Types, Practice, Steps, Process and
Environmental	benefit of Environmental Audit, Benefits of Environmental Auditing
Auditing and EMS	Environmental Management System (EMS), ISO 14000, Benefits of ISO
(12 Lectures)	14001

Text Books

- 1. Canter, L. W., and L. G. Hill. 1981. Handbook of Variables for Environmental Impact Assessment. Ann Arbor, Michigan: Ann Arbor Science.
- 2. Pearce D and EB Barbier (2000) Blueprint for a sustainable economy. Earthscan.
- 3. Rau JG and Wooten DC (1980). Environmental Impact Analysis Handbook. McGraw-Hill Book Company. New York & New Delhi.
- 4. Treweek J 1999, Ecological impact assessment, Blackwell Science, Oxford
- 5. Wathern P (1990). Environmental Impact Assessment: Theory and Practice. Routledge, London and New York, 332 pp.

- 1. Ahmad YJ and GK Sammy (1985). Guide to Environmental assessment in developing Countries. London: Hodder and Stoughton (for the United Nations Environment programme).
- 2. Monnikhof RAH and Edelenbos J (2001). Into the Fog? Stakeholder Input in Participatory Impact Assessment. Impact Assessment and Project Appraisal 19 (1), 29-39.
- 3. Sengupta R (2001). Ecology and economics an approach to sustainable development. Oxford University Press.
- 4. WCED (1987). Our common future: Report of the world commission on environment and development, Oxford University Press.

10. ENVS C-203: Statistics and Computer Applications for Environment Studies (Core Course, 04 Credits)

Course outcomes

- Understanding the concepts of environmental statistics
- Understanding the techniques in sampling and data analysis
- Ability to develop statistical models suitable for environmental modeling

ENVS C-203	Statistics and Computer Applications for	Credits: 04
	Environment Studies	
Unit 1: Descriptive	Background to Environmental Data Analysis, M	leasures of central
Statistics	tendency, measures of dispersion, skewne	ess and kurtosis,
(12 Lectures)	Probability: definition, addition and multiplication	on laws, concept of
	random variable. Probability distributions: Bind	omial, Poisson and
	Normal distribution.	
Unit 2 Hypothesis	Concept of population and sample, Hypothesis t	esting and interval
Testing	estimation for large samples; Chi-square test, t-	test (Unpaired and
(12 Lectures)	Paired) and F test of significance, Analysis of variance (One-way	
	and Two-way).	
Unit 3: Bivariate	Introduction to bivariate analysis, Covariance, C	Correlation analysis
Analysis	(One-tail and Two-tail), and Regression ana	alysis (Linear and
(12 Lectures)	Polynomial).	
Unit 4: Computer	System software and hardware used in er	vironmental data
Application and	analysis, History and importance of Fortr	an programming,
Programming	Versions, Programming steps, Variables and Dat	ta types, Input and
(12 Lectures)	Output, Operators, Functions, Subroutines, Co	ontrol statements,
	Loops, Arrays.	

Text Books

- 1. Rangaswamy R (2010). Textbook of Agricultural Statistics. New Age International
- 1. Gupta SP (2014). Statistical Methods. Sultan Chand and Sons, 1426 pp.
- 2. Chapman SJ (1998). FORTRAN 90/95 for Scientists & Engineers, Mc-Graw Hill.
- 3. Ramakrishnan P (2019). Biostatistics, Saras Publication.
- 4. Rastogi VB (2019). Biostatistics, MEDTECH.

Reference Books

- 1. Snedecor GW and Cochran WG (1989) Statistical Methods. 8th Edition, Iowa State University Press, Ames.
- 2. Stell RG and Torrie JH (1997). Date Principles and Procedures of Statistics. McGraw-Hill.
- 3. Zar JH (2014). Biostatistical Analysis. 5th Edition. Pearson Education India. 760 pp.

11. ENVS C-204: Wetlands: Ecology, Restoration and Management (Core Course, 04 Credits)

- Understanding on the concept of wetlands as ecological systems and its associated concepts
- Understanding on the biological diversity and different habitats in wetlands, and the good and services of such ecosystems
- Understanding on the legislative framework for wetland management

• Understanding on the current environmental issues impacting the wetland ecosystems

ENVS C-204	Wetlands: Ecology, Restoration and	Credits: 04
	Management	
Unit 1: Wetland	Wetlands: origin and typology, forms and distribu	tion, Limnology, Bio-
Ecosystems	geochemical issues and Hydrology (Dynamics	of water chemistry,
(12 Lectures)	Dynamics of sediment quality, Biomass	and Productivity,
	Decomposition and Mineralization, Water disch	narge and sediment
	loading, Wetlands and Groundwater, Water Budg	eting)
Unit 2: Wetland	Wetland biodiversity (inland wetlands, coastal	wetlands, intertidal
Biodiversity, and	fauna and their role in coastal wetlands, role of r	mangroves in coastal
Ecosystem Goods	wetland protection)	
and Services	Ecosystem Goods and Services (People's deper	ndency on wetlands,
(12 Lectures)	Role of wetlands in economy of adjoining	areas, Agriculture,
	fisheries, animal husbandry, Services and valuation	on of wetlands)
Unit 3: Wetland	Wetland restoration (Tools and techniques of	wetland restoration,
Restoration;	Species re-introduction and restoration, Seed-based	ank: implications for
Legislations and	restoration), principles of wetland manage	ement, stakeholder
Policy Frameworks	participation	
(12 Lectures)	Wetlands: Legislation and Policy framework	(Legal aspects and
	provisions for wetland management, Policy fra	mework and issues
	concerning wetlands, Institutional framew	vork for wetland
	conservation and management)	
Unit 4: Current	Urbanization and wetlands, Industrialization	on and wetlands,
Issues & Climate	constructed wetlands, Carrying capacity,	Carbon stock and
Change	sequestration potential of wetlands, Methar	ne and other GHG
(12 Lectures)	emissions from wetlands	

Text Books

- 1. Dodds WK (2002). Freshwater Ecology: Concepts and Environmental Applications. Academic Press, San Diego, California, USA.
- 2. Maltby E (1986). Waterlogged Wealth. Earthscan, London.
- 3. Mitsch WJ and Gosselink JG (2000). Wetlands. 3rd Edition. John Wiley & Sons, New York.
- 4. Prusty BAK, Chandra R and Azeez PA (2017). Wetland Science: Perspectives from South Asia. 1st Edition. Springer Publishers. ISBN 978-81-322-3715-0
- 5. Wetzel RG (2001). Limnology: Lake and River Ecosystems. Third Edition. Academic Press, San Diego, California, USA. 1006 pp.

Suggested Readings

- 1. Gopal B (Compiler) (1995). Handbook of Wetland Management, WWF-India, New Delhi, India. 305 pp.
- 2. Gopal B, Hillbricht-likowska A and Wetzel RG (1993). Wetlands and Ecotones: Studies on land-water interactions. National Institute of Ecology and International Scientific Publications, New Delhi, India.

- 3. Gopal B, Turner RE, Wetzel RG and Whigham DF (1982). Wetlands: Ecology and Management. International Scientific Publications and National Institute of Ecology, Jaipur, India.
- 4. Ramachandra TV, Ahalya N, Rajasekhara Murthy C (2005). Aquatic Ecosystems: Conservation, Restoration and Management. Capital Publishing Company, New Delhi.

12. ENVS C-205: Meteorology (Core Course, 04 Credits)

Course outcomes

- Students will get exposure on the atmospheric processes and related issues
- Students will understand about the weather forecasting and advance information on atmospheric hazards
- Students will be aware about the current global climate change and issues related to it.

Unit1: Earth and	Overview of atmosphere, theories related to evolution of		
Atmosphere	atmosphere, structure and composition of earth's atmosphere,		
(12 Lectures)	weather, and climate		
Unit 2: Atmospheric Heat	Incoming solar radiation, Heat transfer in atmosphere, radiation		
and Temperature	of earth, energy balance, atmospheric greenhouse effect, daily		
(12 Lectures)	and seasonal temperature		
Unit 3: Atmospheric	Humidity, condensation, dew, fog, cloud, stability of		
Moisture and Stability	atmosphere, inversion, cloud development, and precipitation		
(12 Lectures)			
Unit 4: Air Pressure and	Atmospheric pressure, local winds, global winds, air masses and		
Wind	fronts, midlatitude cyclones, weather forecasting, global		
(12 Lectures)	climate change issues		

Textbooks

- 1. Marshall. John, and R. Alan Plumb. Atmosphere, Ocean, and Climate Dynamics: An Introductory, Academic Press.
- 2. Randall DA (2005). An Introduction to the General Circulation of the Atmosphere, Colorado State University Press.
- 3. Wallace and Hobbs. Atmospheric Science (Latest Edition), An Introductory Survey, Elsevier.

- 1. Barry, R. G., 2003. Atmosphere, weather and climate. Routledge Press, UK
- Ellis, E.C., Kaplan, J.O., Fuller, D.Q., Vavrus, S., Goldewijk, K.K. and Verburg, P.H. 2013. Used planet: A global history. Proceedings of the National Academy of Sciences, 110: 7978-7985.
- 3. Firor, J., & Jacobsen, J. E. 2002. The crowded greenhouse: population, climate change and creating a sustainable world. Yale University Press.
- 4. Harvey, D. 2000. Climate and Global Climate Change, Prentice Hall.
- 5. Huybers, P. and Curry, W. 2006. Links between annual, Milankovitch and continuum temperature variability. Nature, 441: 329.
- 6. Kneževič, Z. 2010. Milutin Milankovič and the astronomical theory of climate changes. Europhysics News, 41, 3, 17–20, DOI: 10.1051/epn/2010301.
- 7. Kump, L. R.Kasting, J.F. and Carne, R. G. 2004. The Earth System. 3rdEd. Prentice-Hall. Lovelock, J. 2000. Gaia: A New Look at Life on Earth, Oxford University Press.

13. ENVS P-206: Lab Practical – II: Based on the above papers (Practical: Core Course, 04 Credits)

Course Outcomes

- Determining different quality parameters in various environmental matrix., viz., soil, sludge, solid waste
- Hands-on experience on advanced programming techniques.

ENVS P-206	Environmental Monitoring and Computational Lab-II		
Environmental	Determination of following parameters in soil/aquatic		
Monitoring	(freshwater/marine) sediment/industrial sludge		
	Moisture		
(24Sessions)	Texture		
	 pH and Electrical Conductivity 		
	Total Organic Carbon		
	 Sodium, Potassium, Calcium and Magnesium 		
	 CO₂ evolution from soil 		
Computational Methods	• Hypothesis testing and interval estimation for large		
 Data Streaming, 	samples; Chi-square test, Student t-test (Unpaired and		
Cleaning and	Paired) and F test of significance. Analysis of variance		
analysis	(One-way and Two-way). Correlation and regression		
 Fortran 	• Fortran progamming, Programming steps, Variables and		
programming	Data types, Input and Output, Operators, Functions,		
(24 Sessions)	Subroutines, Control statements, Loops, Arrays		
Note: The experiments should	he conducted based on the availability of resources and infrastructure		

Note: The experiments should be conducted based on the availability of resources and infrast

Text Books

- 1. Allen SE (1989). Chemical Analysis of Ecological Materials. 2nd Edition, Blackwell Scientific Publications, Oxford, London. 368 pp.
- 2. Cochran, W.G. and G.W. Snedecor. By K. Koehler, 2012 Statistical Methods, 8th edition. Iowa State University Press.
- 3. Gupta SP (2014). Statistical Methods. Sultan Chand and Sons, 1426 pp.
- 4. Saxena MM (1990). Environmental Analysis: Water, Soil and Air. 2nd Edition. Agro Botanical Publishers, Bikaner, India.
- 5. Stell, R.G. and J.H. Torrie. Date Principles and Procedures of Statistics. McGraw-Hill.
- Tandon HLS (2005). Methods of analysis of soils, plants, waters, fertilizers & organic manures. 2nd Revised Edition. Fertilizer Development and Consultation Organization (FDCO). New Delhi. 201 pp.

14. ENVS VAC-207: Value Added Course (Non-Credit)

A. Mineral Beneficiation and Value Addition Process

- Understanding on mineral deposits in India and their mining
- Understanding on mineral identification and beneficiation process
- Understanding on different analytical instruments used in mineral and chemical assay

ENVS VAC-207	Mineral Beneficiation and Value Addition	Credits: Nil	
	Process		
Unit 1: Mineral Deposits	Introduction to various mineral deposits in I	ndia, Placer minerals	
(06 Lectures)	and their importance, exploration, mining.		
Unit 2: Mineral	Megascopic identification of ore forming m	ninerals, microscopic	
Identification	identification of ore forming minerals, principles and mechanism		
(06 Lectures)	(06 Lectures) of ore microscope		
Unit 3: Ore Beneficiation	Ore dressing, comminution, physical conc	centration methods,	
Processes (10 Lectures)	Pretreatment Processes, Extraction via Flotat	tion,	
Unit 4: Futuristic	Future mineral consumption and world	economy; energy	
Perspectives	demand and supply in future; marine	mineral resources;	
(08 Lectures)	developments in mineral exploration and exp	ploitation.	

Suggested reading

- 1. Chatterjee, K.C. 2012. An introduction to mineral economics. New Age International Publishers, New Delhi.
- 2. Govett, G.J.S. & Govett, M.H. 1976. World mineral supplies. Elsevier, Amsterdam.
- 3. Sinha, R.K. & Sharma, N.L. Mineral economics. Oxford & IBH.

B. Environmental Ethics

Course Outcomes

- Understanding on conceptual tools for thinking through, and participating in, complex ethical discussions about nature, the environment, and ecosystems.
- Understanding on a variety of new perspectives, principles, and frameworks that may be different from their own.
- Familiarizing with classical and current concepts, topics and debates in environmental ethics.

ENVS VAC - 207	Environmental Ethics Credits: Nil
Unit 1: Introduction to	Background: Concept, Scope, and Significance; Land Ethics (Aldo
Environmental Ethics	Leopold); Ethics and Animals; Human and Other Animals;
(08 Lectures)	Contemporary Moral Problems
Unit 2: Environmental	Philosophical Roots of Anthropocentricism (René Descartes, John
Philosophy	Locke, The Western tradition, John Stuart Mill) Bio Centrism; Ecological
(06 Lectures)	Animalism; Eco-centrism
Unit 3: The Human Place in	Nature: Conception of a wild nature; Romanticism; The action of man
Nature	upon nature; Political Ecology; Ecofeminsm; Deep ecology; Cultural
(08 Lectures)	Ecology; postmodernism
Unit 4: Concept of	Sustainable development: the conventional definition; Achieving a
Sustainability	sustainable economy: Some Perspectives; Human Restoration of
(08 Lectures)	Nature; philosophy of climate change

Text Books

1. Sandler, R. 2018. Environmental Ethics: Theory and Practice. Oxford University Press.

- 2. Gardiner and Thompson, 2017. The Oxford Handbook of Environmental Ethics. Oxford University Press
- 3. Attifield R (2018). Environmental Ethics: A Very Short Introduction, Oxford University Press.

Reference Books

- 1. Leopold. A. 1968. A sand County Almanac. Oxford University Press.
- 2. Boddice, R. 2011. Anthropocentrism: Humans, Animals, Environment. Brill.
- 3. Soper, 1995. What is Nature? Blackwell
- 4. Shiva, V. 2015. Earth Democracy: Justice, Sustainability and Peace. North Atlantic Books. Berkeley.
- 5. Shiva, V. 2010. Staying Alive: Women, Ecology, and Development.

15. Student Seminar (Departmental Journal Club)

All the students shall be instructed to present a research article published in peer reviewed journals with necessary supervision and guidance from faculty members. The evaluation shall be out of 10 marks, and the said mark shall be reflected as one of the components in the end-term practical paper.

16.Summer Internship

All the students shall be instructed to undergo a summer internship programme in (i) industries, (ii) different organizations (NGOs or civil society organization working on environmental issues) and (iii) research institutions. The students shall also have to choose an internal supervisor (from amongst the faculty members of the Department) for the said exercise. The internal supervisor/ faculty shall make necessary coordination with different organizations for the desired internship programme of the respective students. Further, students shall also be encouraged to participate in the summer internship programme conducted by different Government of India agencies and Science Academies such as INSA-IASc-NASI. The students, who don't undertake summer internship programme shall be given different assignments or term papers and shall be required to submit reports for evaluation. The summer-internship report / assignment / term paper shall be evaluated by a board of internal examiners (comprising of all the faculty members of the Department). The evaluation shall be out of 10 marks, and the said mark shall be reflected as one of the components in the end-term practical paper of subsequent semester (3rd semester).

SEMESTER - III

17. ENVS C-301: Environmental Geosciences (Core Course, 04 Credits)

- Introduction to rock forming minerals
- To understand the different rock types and their formation
- Deals with emerging field like geochemistry and isotopic studies

ENVS C-301		Environmental Geosciences	Credits: 04
Unit 1: Rock	Forming	Rock forming minerals, physical and chemic	al properties of minerals,
Minerals and	Igneous	Silicate mineral groups.	
Rocks		Igneous rocks – classification, forms and te	xtures; Bowen's reaction

(12 Lectures)	series, classification of igneous rock.		
Unit 2. Sodimonton, and	Sadimontany racks toyture and structure; sadimontany processes		
Unit 2. Sedimentary and	Seumentary rocks – texture and structure, seumentary processes		
metamorphic rock with	and environments, sedimentary rock types.		
associate minerals	Metamorphic rock: Physico-chemical conditions, facies, grade, P-T-t		
(12 Lectures)	paths and tectonic significance, metamorphic rock types.		
Unit 3: Environmental	Abundances of elements, Oddo-Harkin Law. Meteorites.		
Geochemistry and	Geochemical and Cosmochemical classification of elements and their		
Radiogenic Isotope	basis. nuclides. Radioactive decay schemes. Decay constant, half-life,		
(12 Lectures)	parent-daughter relations. Rb-Sr and Sm-Nd systematics and their		
•	use in geochemistry.		
Unit 4: Stable isotopes in	Stable isotopes: processes of isotope fractionation, δ -notation for H,		
Environment studies	C and O isotopes. O isotopes: fractionation in the hydrologic cycle.		
(12 Lectures)	processes. Applications of isotopes in climate,		
	hydrologic/hydrogeologic and biogeochemical studies.		

- 1. Brian Mason (1982). Principles of Geochemistry. J. Wiley & Sons.
- 2. Hoefs, J. (1997). Stable Isotope Geochemistry, 4th edition, Springer-Verlag, Berlin,
- 3. Krauskopf, K. B. (1979). Introduction to Geochemistry. McGraw Hill.
- 4. Winter, J.D. (2001). An introduction to Igneous and Metamorphic Petrology, Prentice Hall.

Reference Books

- 1. Pettijohn, F.J. (1975). Sedimentary Rocks. 3rdEdn. Harper and Row Publ., New Delhi.
- 2. Philpotts, A.R. (1994). Principles of Igneous and Metamorphic Petrology, Prentice Hall.
- 3. Tucker, M.E. (1981). Sedimentary Petrology: An Introduction, Wiley & Sons, New York.

18. ENVS C-302: Energy and Environment (Core Course, 04 Credits)

- Understand energy scenarios, energy sources and their utilization.
- Acquire a comparative background in major social, political, ecological, and technological processes in the history of the global and national energy crises

ENVS (C- 30 2		Energy and Environment	Credits: 04	
Unit	1:	Non-	Classification of Sources of Energy, types of non-renewable energy: Coal,		
renew	able	Energy	Petroleum, History, Issues and Future Perspectives		
(12 Le	(12 Lectures)				
Unit 2	2: Re	newable	Types of renewable energy, history and impor	rtance; Tidal energy,	
Energy	Energy hydrothermal energy, hydroelectric energy, geothermal energy,		hermal energy, solar		
(12 Lectures)		es)	energy, wind energy		
Unit	3:	Biomass	Biofuels, bio-diesel, Gobar gas, fermentation techno	logy, waste to energy	
Energy					
(12 Lectures)		es)			
Unit	4:	Energy	Current scenario in the energy demand, law and	regulation on energy	

Policy	management, Possible Measures: Containment of population growth,	
(12 Lectures)	Promoting public/mass transport systems, Clean energy development,	
	Using waste heat, Saving Energy in industry.	

- 1. McKillop A and Newman S (2005). The Final Energy Crisis. Pluto Press, London. 325 pp.
- 2. J. Glynn Henry and Gary. W. Heinke (2004). "Environmental Science and Engineering", Prentice Hall of India.
- 3. Howard PH, Boethling RS and Jarvis WF (2020). Handbook of Environmental Degradation Rates. 1st Edition. CRC Press. 776 pp.

Reference Books

- 1. McKinney ML and Schoch RM (1998). Environmental Science: Systems and Solutions. Jones and Bartlett Publishers, Boston. 639 pp.
- 2. Miller GT Jr. (1996). Living in The Environment: Principles, Connections, and Solutions. 9th Edition. Wadsworth Publishing Company, New York. 727 pp.
- 3. Park C. (2001). The Environment: Principles and Applications. Routledge Publishers, London and New York, 598 pp.

Specialized Courses: Science Stream (M. Sc.)

19. ENVS E-303: Elective – I

A. Environmental Chemistry and Analytical Tools (Elective Course, 04 Credits)

- students will understand the chemistry of all spheres.
- understand the formation and properties of different spheres.
- understand the mechanism and principles of different instruments.

ENVS E-303	Environmental Chemistry and Analytical Tools Credits: 04				
Unit 1:	Composition, structure and functions of atmosphere, atmospheric chemistry,				
Atmospheric	classification of elements, earth's energy budget, reactio	ns in the lower and			
Chemistry	upper atmosphere, radioactivity in the atmosphere, at	mospheric stability,			
(12 Lectures)	inversions and mixing height, wind rose.				
Unit 2:	Hydrosphere: structure and properties of water and t	their environmental			
Hydrosphere	significance, distribution of water in earth, freshwater	and its chemistry,			
Chemistry	solubility of gases in water, role of water in environment.				
(12 Lectures)	Marine Chemistry: seawater properties and its constituents, nutrients and				
	salts, metallic and non-metallic mineral resources such as N	Manganese nodules.			
Unit 3:	Introduction to lithosphere, weathering (types and proc	esses), pedogenesis			
Lithosphere	(types, factors and process of soil development), soil types and their				
Chemistry	formation, soil profiles, soil properties (physical and Chemical).				
(12 Lectures)					
Unit 4: Analytical	Principles and brief on analytical methods: Titri	metry, gravimetry,			
Tools	Centrifugation, colourimetry, spectrophotometry, flame photometry, atomic				
(12 Lectures)	absorption spectrometry, chromatography				

Text books

- 1. Rao, C. S. (1991). Environmental pollution control engineering. Wiley Watson Limited, New Delhi.
- 2. De AK (2003). Environmental Chemistry. Fifth Edition. New Age International (P) Limited, Publishers, Kolkata. 406 pp.
- 3. Sharma BK. Instrumental Methods. Goel Publishing House, Meerut.

Reference Books

- 1. Sharma BK. Environmental Chemistry. Goel Publishing House, Meerut.
- 2. Chatwal G and Anand S. Instrumental Methods of Chemical Analysis (Analytical Chemistry). S. Chand & Sons Publishers, New Delhi.
- 3. Kealey D and Haines PJ. Analytical Chemistry. Viva Books Private Limited, Mumbai.
- 4. Christian GD. Analytical Chemistry. John Willey & Sons.

B. Environmental Modeling (Elective Course, 04 Credits)

Course outcomes

- To understand the environmental system.
- To understand different statistical and mathematical models suitable for environmental systems
- To able to develop different environmental models

ENVS E-303	Environmental Modeling Credits: 04	
Unit1: Background	Environmental System and its components, Modeling, Model	
(12 Lectures)	Classification - Deterministic Models, Stochastic Models, Dynamic	
	Models, Steady State Models. General Steps Involved in Modeling,	
	Mass Balancing, Energy Balancing	
Unit 2: Population	Growth Kinetics: Exponential Growth Model, Logistic Growth Model;	
Growth Modelling	Monod Equation, Two Species Population Growth Model of	
(12 Lectures)	Competition, Lotka-Volterra Prey-Predator Model	
Unit 3: Water Quality	Dissolved Oxygen (DO), DO Sag Curve, biochemical oxygen demand	
Modelling	(BOD), Streeter Phelps equations for point and distributed sources,	
(12 Lectures)	eutrophication in flowing water, contamination transport and Ground	
	water pollution modelling	
Unit 4: Air quality	Point source modeling, Line source modeling, Area source modeling,	
Modeling	Gaussian Plume models, Long-Range Atmospheric Transport (LRAT)	
(12 Lectures)	and Dispersion Models	

Text Books

- 1. Hipel, K.W and A.I. McLeod. (1994). Time Series Modeling of Water Resources and Environmental Systems. Elsevier Science.
- 2. Zanneti, P. (1990). Air Pollution Modeling Theories, Computational Methods and Available Software. Van Nostrand Reinhold, New York.

- 1. Thomann, R.V. and J.A. Mueller. (1987). Principles of Surface Water Quality Modeling and Control, Harper and Row.
- 2. Chapra, S.C. (1997). Surface Water Quality Modeling, McGraw-Hill. 3. Benaarie, M.M. 1980. Urban Air Pollution Modeling. MIT Press.

20. ENVS E-304: Elective – II

A. Environmental Pollution (Elective Course, 04 Credits)

Course Outcomes

- Helps students to understand different types of environmental pollution in details, their sources and impact
- Creates skill to analyze present status of environmental contamination
- Critically analyze policies and programs implemented to combat environmental pollution

ENVS E-304	NVS E-304 Environmental Pollution Credits: 04	
Unit 1:	Air Pollutants (sources and types), impacts of air pollution on ecosystem	
Background, Air	and human health, and control measures; National Ambient Air Quality	
and Noise	Standard, air quality index, indoor air pollution	(sources and impacts).
Pollution	Noise pollution: sources, permissible levels, im	pacts (on communication,
(12 Lectures)	life forms and human health) and control meas	ures
Unit 2: Water	Sources, water pollutants (inorganic and	organic) and impacts
Pollution (Surface	(ecosystem and human health), eutrophication	n, water quality standards
water,	and Water Quality Index, wastewater treatn	nent (concept, types and
groundwater and	processes).	
marine pollution)	Marine Pollution: sources, impacts and con	trol measures; oil spills,
(12 Lectures)	thermal pollution and their impacts	
Unit 3: Soil	Physico-chemical and biological properties of so	oil (texture, structure,
Pollution	inorganic and organic components), cause	s of soil pollution and
(12 Lectures)	degradation, soil pollutioncontrol measures;	Industrial effluents and
	their interactions with soil components, acid	mine drainage; Soilmicro-
	organisms and their functions - degradation of	of pesticides andsynthetic
	fertilizers.	
Unit 4: Solid and	Solid waste: composition, classification, sou	irces and characteristics,
Hazardous Waste	waste generation, Concept of 4R (Refuse, Rec	duce, Recycle and Reuse),
Pollution	Pollution solid waste management (collection, segregation, transportat	
(12 Lectures)	processing: volume reduction), biological and	chemical techniques for
	energy and other resource recovery; compostir	ng and vermicomposting.
	Hazardous Waste: sources, characteristics, ca	ategorization, generation,
	collection, transport, treatment and d	isposal. Legislation on
	management and handling of hazardous waster	S.

Text Books

- 1. De AK (2003). Environmental Chemistry. Fifth Edition. New Age International (P) Limited, Publishers, Kolkata. 406 pp.
- 2. Holgate ST, Koren HS, Samet JM and Maynard RL. Eds. (1999). Air pollution and health. Elsevier.
- 3. Khopkar SM (2018). Environmental Pollution Monitoring And Control. 2nd Edition. New Age International Private Limited, India.
- 4. Rao, C. S. (1991). Environmental pollution control engineering. Wiley Watson Limited, New Delhi.
- 5. Sharma BK. Environmental Chemistry. Goel Publishing House, Meerut.

Reference Books

- 1. Cunningham WP and Cunningham MA (2002). Principles of Environmental Science: Inquiry and Applications. McGraw-Hill Publications, New Delhi. 418 pp.
- 2. Johri R (2009). E-Waste: Implications, regulations, and management in India and current global best practices. TERI Press, New Delhi. 330 pp.
- 3. McKinney ML and Schoch RM (1998). Environmental Science: Systems and Solutions. Jones and Bartlett Publishers, Boston. 639 pp.
- 4. Miller GT Jr. (1996). Living in The Environment: Principles, Connections, and Solutions. 9th Edition. Wadsworth Publishing Company, New York. 727 pp.
- 5. Park C. The Environment: Principles and Applications. Routledge Publishers, London and New York, 598 pp.
- 6. Sengupta B (2000). Environmental standards for ambient air, automobiles, fuels, industries and noise. Central Pollution Control Board, New Delhi, India. 78 pp.

B. Mining and Environment (Elective Course, 04 Credits)

Course Outcomes

- Understanding on different mineral deposits and reserves (including fossil fuels) in India and world
- Understanding on different mining practices and their environmental impacts.
- Helps to understand the case studies on different mining processes and mineral beneficiation.

ENVS E-304	Mining and Environment	Credits: 04
Unit 1: Mineral	Economic mineral deposits: metal and non-metal deposit, processing	
Resources	of mineral, extraction of metals. Uses of common metal and their	
(12 Lectures)	recycling, radioactive minerals.	
Unit 2: Fossil Fuels	Non-renewable energy resources, fossil fuels	, their classification, Coal,
(12 Lectures)	Petroleum, Natural Gas and Other Gaseous fuels, Preliminary idea	
	about geothermal energy and nuclear energy	and their management
Unit3:	Environmental impact of mining and p	processing of minerals,
Environmental	Environmental effect on mining dump an	d byproducts, resources
Impacts of Mining	conservation of mineral resources, Environn	nental impacts of uses of
(12 Lectures)	fossil fuels	
Unit 4: Case	Case studies on mining operation and enviror	nmental impacts (Coal,
Studies	Iron Ore, Bauxite, Chromite, Radioactive minerals, Phosphate, Lead-	
(12 Lectures)	Zinc, Gold)	

Text Books

- Tiwari SK (2021). Mining and Environmental Science. Atlantic Publishers, New Delhi. 376 pp.
- 2. Dhar BB and Thakur DN (1996). Mining Environment. 1st Edition. CRC Press. 416 pp.
- **3.** Spitz K and Trudinger J (2019). Mining and the Environment: From Ore to Metal. CRC Press. 812 PP.

Reference Books

1. McKinney ML and Schoch RM (1998). Environmental Science: Systems and Solutions. Jones and Bartlett Publishers, Boston. 639 pp.

- 2. Miller GT Jr. (1996). Living in The Environment: Principles, Connections, and Solutions. 9th Edition. Wadsworth Publishing Company, New York. 727 pp.
- 3. Eggert RG and Olin JM (Ed.) (2016). Mining and the Environment: International Perspectives on Public Policy. 1st Edition. Taylor & Francis Ltd. 180 pp.
- 4. Marcus JJ (Ed.) (1997). Mining Environmental Handbook: Effects of Mining on the Environment and American Environmental Controls on Mining. Imperial College Press. 816 pp.

21. ENVS P-305: Lab Practical – III (Based on the papers opted in Semester-III) (Core Course, 04 Credits)

Course Outcomes

- Hands-on experience on megascopic identification of rock forming minerals and rock types.
- Hands on experiences on different microscope to identify rock forming minerals, ore forming minerals and different rock types.
- Measure using different correction using different geoinformatics techniques
- Measuring the quality parameter of air and soil using different instruments

ENVS P-305	Lab Practical – III (Environmental Monitoring, Credits: 04
	Geological and Geo-informatics Lab-III)
Geological Lab	• Megascopic study of important rock forming minerals, rocks
	and ore minerals.
(16 Sessions)	• Microscopic study of important rock forming minerals, rocks.
	Study and interpretation of Geological maps and sections.
Geo-informatics Lab	Preprocessing: geometric correction, atmospheric correction
	and radiometric correction- Image Enhancement: Stretch, Single
(16 Sessions)	Band Enhancement (Image reduction & Magnification, Contrast
	Stretching, Filtering & Edge enhancement) – Multiband
	Enhancement (Band ratioing, color composite generation,
	Principal Component Analysis, NDVI).
Environmental -	• Measurement of ambient air quality parameters (PM ₁₀ , PM _{2.5} ,
Analytical Lab	NO _x , SO ₂)
	• Determination various water and soil quality parameters (base
(16 Sessions)	cations, nutrients)
Note: The experiments should be conducted based on the availability of resources and	
infrastructure	

Text Books

- 1. A.E. Adams, W.K. Mackenzie and C. Guillford: Atlas of sedimentary rocks under thin section.
- 2. Jensen R. John, Remote Sensing of the Environment: An Earth Resource Perspective, Pearson Education Pvt. Ltd., Delhi, 2006.
- 3. W.K. Mackenzie and C. Guillford: Atlas of rock forming mineral in thin section.

Reference Books

1. Digital Image Processing (3rd Edition) Rafael c.Gonzolez, Richard E.Woods Prentice Hall, 2007

- 2. Gibson, Paul.J. and Clare H. Power, Introductory Remote Sensing: Digital Image Processing and Applications, Routledge, London, 2000.
- 3. John A. Richards, Springer-Verlag, Remote Sensing Digital Image Analysis, 1999.
- 4. Milman S. Andrew, Mathematical Principles of Remote Sensing making Inferences from Noisy Data, Ann Arbor Press, Noida, 1999.
- 5. Paul J. Curran, Principles of Remote Sensing, English Language Book Society, Longman, 1985.

Specialized Courses: Arts Stream (M. A.)

22. ENVS E-303: Elective - I

A. Environment and Resource Economics (Elective Course, 04 Credits) Course outcomes

- Learn about basic economics terminology and concepts essential for environmental economics
- Economic principles and tools are used to discuss environmental problems, such as pollution, management and use of renewable and non-renewable natural resources.
- Provides students with an ability to think about pressing environmental and resource issues and possible solutions in terms of economic terms choices, tradeoffs, and scarcity.

ENVS E-303	Natural Resource Economics	Credits: 04
Unit 1: Overview of	Introduction to Natural Resource Economics	
Natural Resource	Economic growth and environmental limits: Class	sical and neo-classical
Economics	economic perspectives	
(12 Lectures)		
Unit 2: Natural	Property Right and Resource Allocation: Pareto	Optimality, Invisible
Resource Valuation	hand theorem, and Hotelling's rules	
and Allocation	Natural resources valuation: Benefit-cost analys	is of stock and Flow
(12 Lectures)	resources	
Unit 3:	Concepts and theories of environmental exter	nalities: Piguvian Tax
Environmental	approach, Coase theorem, Environmental Kuznets	Curve
Externalities	Corporate Environmental Responsibility and soci	al responsibilities can
(12 Lectures)	be added (Green business Models, Green Infrast	ructure, Green Office,
	building	
Unit 4: Market and	Market creation as a reform strategy: Issues and	perspectives; Payment
Natural Resource	for ecosystem services, environmental taxes, en	nission trading; Green
Management	Accounting, Green GDP Market failure: causes and	potential solutions
(12 Lectures)		

Text Books

- 1. Bhatachaya RN (2001). Environmental Economics: An Indian Perspective. Oxford. New Delhi
- 2. Harris JM and Brian R (2018). Environmental and Natural Resource Economics: A contemporary approach. London: Routledge.
- 3. Kolstad CD (2011). Intermediate Environmental Economics. Oxford. New York.
- 4. Costanza R (ed) 1990. Ecological Economics: The science and management of sustainability. Columbia University, New York.

Reference Books

- 1. Dasgupta, P. (1982). The Control of Resources. Oxford: Blackwell.
- 2. Fisher, A.C. and Krutilla, J.V. (1974). Resource and environmental economics, Cambridge Survey of Economic Literature, Cambridge: Cambridge University Press.
- 3. Gopalakrishnan, C. (2000). Classic Papers in Natural Resource Economics. London. Macmillan press ltd.
- 4. Hackett SC (2001). Environment and Natural Resource Economics: Theory, policy, and the sustainable society. London: M.E.Sharpe.
- 5. Rees J (1985). Natural Resources: Allocation, Economics and Policy, London: Methuen.

B. Sustainable Agriculture and Food Security (Elective Course, 04 Credits)

Course Outcomes

- Understanding environmental issues related to present agricultural production.
- Reviewing different systems of agricultural production through the lense of sustainability
- Analyzing problems and exploring alternatives to current methods of production.
- Understanding dynamics of food policy and food security

ENVS E-303	Sustainable Agriculture and Food Security (Credits: 04)
Unit 1: Current Agricultural Practices and Environment (12 Lectures)	Economic, social, and environmental dimensions of our current production agricultural systems; historical development of sustainability concepts as they apply to food production
Unit 2: The Climate and Soil Connection (12 Lectures)	Introduction and overview of the issue of degraded soils; Soil Nutrient and Soil Degradation; Soil Pollution; Salinity and Erosion Climate change impacts food production and food production impacts climate change; Climate change impact on agriculture; Desertification
Unit 3: Poverty and Food Security (12 Lectures)	National and International challenges to food security and the drivers of change in the context of poverty alleviation and food security. Concepts of malnutrition, under-nutrition, over-consumption and imbalanced diets.
Unit 4: Contemporary Challenges (12 Lectures)	Assessing Water Challenges in Modern Agricultural System; Global Water Crises and Food Security; Cost Benefit and Future Crises with inorganic fertilizers; growing demand for animal product and its environmental impact; monopolized and commercial agriculture and biodiversity; Organic Farming: Opportunities and Challenges

Text Books

- 1. Swaminathan MS (2010). Science and sustainable food security, World Scientific Publishing Co., Singapore.
- 2. Banerjee G and Banerji S (2017). Economics of sustainable agriculture and alternate production systems, Ane Books Pvt Ltd.

Reference Books

- 1. Vepa SS (2004). Atlas of the sustainability of food security. MSSRF, Chennai.
- 2. Sithamparanathan J, Rengasamy A and Arunachalam N (1999). Ecosystem principles and sustainable agriculture, Scitech Publications, Chennai.

23. ENVS E-304: Elective - II

A. Natural Resource Conflicts and Choices (Elective Course, 04 Credits)

Course Outcomes

- Understanding the various sources of natural resource conflict
- Learning about different strategies used for analyzing conflicts
- Recognizing various challenges and how to address them within the collaborative process and negotiations

ENVS E-304	Natural Resource Conflicts and Choices Credits: 04	
Unit 1: Fundamentals of	Nature of resource conflict, Right to Natural Resources, Types of	
Resource Conflict	Resource conflict, theoretical and empirical evidence linking	
(12 Lectures)	environmental issues and competition over scarce resources to violent	
	conflict within and between states	
Unit 2: Key Resources and	Water Resource Conflict, land Conflict, Conflict on Energy Resources,	
Issues	Pollution and Conflict; conflict over forest resources, conflict over	
(12 Lectures)	marine resources; geo-politics over global commons; Focus will be on	
	specific case studies	
Unit 3: Resistance and	The discourses linking Environment with development; Environmental	
Developmental Projects	Movements against developmental projects in India and abroad	
(12 Lectures)		
Unit 4: Conflict	Effective Negotiation: mutual gain and objective criteria; co-	
Management Approaches	management; the use of science in collaborative process	
(12 Lectures)		

Text Books

- 1. Dannreuther R and Ostrowski W (2013). Global Resource: Conflict and Cooperation. Palgrave Macmilan, UK.
- 2. Narayanan NC (2008). State, Natural Resource Conflict and Challenges to Governance: Where do we go from here? Academic Foundation. 256 pp.
- 3. Emma, G and H. Gavin. 2014. Natural Resource Extraction and Indigenous livelihoods: Development Challenges in era of globalization. Ashgate Publishing Company. England

- 1. Thomas Homer-Dixon. 1999. Environment, Scarcity, and Violence. Princeton: Princeton University Press.
- 2. Michael T. Klare 2012. The Race for What's Left: The Global Scramble for the World's Last Resources, New York: Picador.
- 3. Michael T. Klare 2002. Resource Wars: The New Landscape of Global Conflict, New York: Henry Holt.
- 4. David Dobbs, 2000. The Great Gulf: Fishermen, Scientists, and the Struggle to Revive the World's Greatest Fishery, Washington, D.C.: Island Press.

- 5. Hank Fischer, 1995. Wolf Wars: The Remarkable Inside Story of the Restoration of Wolves to Yellowstone, Helena, MT: Falcon Press.
- 6. Barry Rabe, 1994. Beyond NIMBY: Hazardous Waste Siting in Canada and the United States, Washington, D.C. Brookings.
- 7. Julia Wondolleck and Steven Yaffee, 2000. Making Collaboration Work: Lessons from Innovation in Natural Resource Management, Washington, D.C. Island Press.

B. Sustainable Urban Planning (Core Course, 04 Credits)

Course outcomes

- Understanding the basic concepts underlying environmental issues of urban areas.
- Understanding common urban planning debates from the point of view of environmental sustainability.
- Analyzing different themes / dimensions of sustainable cities, like transportation, public spaces, energy efficiency, resilience and sustainable neighborhoods.

ENVS E-304	Sustainable Urban Planning Credits: 04	4
Unit 1: Urbanization	History of Urbanization: Transforming world environment; Pollution	and
and Environment	Urbanization; Energy and Urbanization; Climate Change	and
(12 Lectures)	Urbanization; Water Scarcity and Urbanization	
Unit 2: Sustainable	Linking Sustainability Concept and Cities, Dimension of ur	ban
Cities: An Introduction	sustainability: Environment, Poverty, equity and justice; Implication	is of
(12 Lectures)	Urban Form, Density, Land Use Pattern, Transportation System, Wa	aste
	management and Energy Conservation	
Unit 3: Sustainable	Town Planning Acts and their environmental aspects, Urbanization	n in
Urban Development	the Global South, Governance and Future Cities; New urbar	nism
and Spatial Planning	principles, Smart city concept; Policy, programmes, schemes	and
(12 Lectures)	strategies adopted by Government (Central &State) to ach	ieve
	sustainability in urban development	
Unit 4: Natural Spaces	Concept of 'controlled nature'; scope, importance, and threats to nat	ture
in a City	in the city; organization and planning of green spaces such as pa	arks,
(12 Lectures)	gardens and public spaces; concept of green belts; urban natural forest	
-	ecosystem as green lungs.	

Text Books

- 1. Cooper R.,E. Gram, B. Christopher. 2009. Designing Sustainable Cities. Wiley-Blackwell. United Kingdom.
- 2. Pugh C. 2001. Sustainable Cities in Developing Countries. Routledge.

- 1. Corburn, J. 2009. Toward the Healthy City: People, Places, and the Politics of Urban Planning. MIT Press.
- 2. Douglas F. 2007. Sustainable Urbanism: Urban Design with Nature. John Wiley and Sons.
- 3. Egister, R. 2006. EcoCities: Rebuilding Cities in Balance with Nature. New Society Publishers.
- 4. Flint J. and Raco M. 2012. The Future of Sustainable Cities: Critical Reflections. Policy Press.

- 5. Portney KE (2013). "Taking Sustainable Cities Seriously: Economic Development, the Environment, and Quality of Life in American Cities", Cambridge, "Chapter 1: The Conceptual Foundations of Sustainable Cities: Sustainability, Sustainable Economic Development, and Sustainable Communities", MIT Press.
- 6. Yudelson, J. 2007. Green Building A through Z: Understanding the Language of Green Building. Published by New Society Publishers.

24. ENVS P - 305: Field Study/Tutorials/Assignments: Based on the above papers opted in Semester-III) (Course based on Field Study/ Tutorials/ Assignments, 04 Credits)

Course Outcomes

- Hands-on experience of carrying out field survey on various socio-ecological issues
- Understanding on the on-ground situation of various environmental problems faced by different stakeholders and society at large
- Experience of preparing field-study reports, and interpretations

ENVS P-305	Course based on Field Study/ Tutorials/ Assignments
Under this course, st	udents will be given training on carrying out field survey, designing
survey instruments, vi	z., semi-structured and structured questionnaire, conducting focused
group discussions.	

(48 Sessions)

Note: The survey sites should be selected based on the availability of resources and infrastructure

25. Recommended CBCT Courses (Inter Disciplinary Electives for Semester III)

(i) BIOT CT-300: Biotechnology in Human Welfare (Department of Biotechnology)

- Understanding on the inter disciplinary overview of the concepts and their applications in the field of Agriculture, Environment, Health and industry etc.
- Understanding on various concepts of Biotechnology, methods and applications in welfare of Mankind.
- Learning of comparative advantages and disadvantages of several basic technique of Biotechnology.

BIOT CT - 300	Biotechnology in Human Welfare (04 Credits)
Unit I: Basic Concepts	Basic Concepts of Biotechnology and its applications,
Biotechnology	Recombinant DNA technology; gene cloning, human genome
(10 lectures)	project, Tools of Bioinformatics.

	A stall set and the transmission protocol set and set as a set the start set
Unit II: Agricultural and	Agricultural and Environmental Biotechnology: Application in
Environmental	Breeding, Nitrogen fixation, Transfer of pest resistance genes to
Biotechnology	plants, Interaction between plants and microbes, Qualitative
(10 lectures)	improvement of livestock. Crop plant genome project
	Chlorinated and non-chlorinated organ pollutant degradation;
	degradation of hydrocarbons and agricultural wastes, stress
	management, development of biodegradable polymers.
Unit III: Medical and	Development of therapeutic agents, recombinant live vaccines,
Pharmaceutical	gene therapy, Diagnostics; Principle of DNA fingerprinting, Stem
Biotechnology	cell Biology, Ethical issues in Biotechnology research
(10 lectures)	
Unit IV: Industrial	Introduction to bioprocess technology. Range of bioprocess
Biotechnology	technology and its chronological development. Basic principle
(10 lectures)	of fermentation technology. Types of microbial culture and its
	growth kinetics– Batch, Fed batch and Continuous culture.

Recommended Textbooks and References:

- 1. John E. Smith. Biotechnology (2009) 5th Edition, Cambridge University Press
- 2. S. Ignacimuthu Biotechnology: An Introduction (2012) 2nd Edition, Narosa Publishing House Ltd., India

(ii) BOTA CT-300: Economic Botany (Department of Botany)

- Understanding on different plants and crops of commercial importance
- Understanding on agro-forestry practice and plant species of significance
- Understanding on medicinal aromatic plants and their utilization

BOTA	Economic Botany	Credits - 04
CT-300		
Unit- I	Origin, history, domestication, botany, cultivation, proc	luction and use of:
	Cereals: Wheat, rice, maize, sorgnum, pearl millet	and minor millets.
	lentil, horsegram, lab-lab bean.	pea, soyabean, pea,
Unit- II	Origin, distribution, cultivation, production and utilization	of economic plants
	of following groups such as Plant of agro-forestry importar	ice: Teak, Sal Acacia,
	Sesbania, Neem etc. Fibres: cotton, silk cotton, jute, sunnh	emp.
	Oilseeds: Groundnut, sesame, castor, rape seed, n	nustard, sunflower,
	safflower, niger, oil palm, coconut and linseed.	
Unit- III	Origin, distribution, classification, production and utilization	on of Fruits: mango,
	banana, citrus, guava, grapes and other indigenous fruits	; apple, plum, pear,
	peach, cashewnut and walnut; Vegetables: tomato, brin	jal, okra, cucumber,
	cole crops, gourds etc.	
Unit- IV	Important medicinal and aromatic plants: Sarpagandha, Be	elladonna, Cinchona,
	Nux-Vomica, Vinca, Mentha And Glycirrhiza, Planta	go etc.; Narcotics:
	Cannabis, Datura, Gloriosa, Pyrethrum and opium. Im	portant Spices and
	condiments Ginger, Garlic, Cinnamon, Cardamom, Cumin,	Foeniculum, etc.

Recommended Textbooks and References:

- 1. Economic Botany: S. L. Kochhar, Cambridge University Press.
- 2. Economic Botany- Principle & Practices: G.E. Wickens, Kluwer Academic Publishers.
- 3. Economic Botany & Ethnobotany: Afroz Alam, Willey.

(iii) ENVS CT-300: Population and Environmental Issues (Department of Environment Studies)

Course Outcomes

- Understanding the human population growth pattern and its associated environmental impacts
- Understanding the energy scenarios and different issues pertaining to environmental degradation

ENVS CT-300	Population and Environmental Issues Credits: 04	
Unit 1: Demographic	Introduction, History of human population growth, The	
Overview	demographic transition: India and World; Projections of population	
(12 Lectures)	growth, Effects of human population growth, Unsustainable lifestyle	
	– increased consumerism.	
Unit 2: Energy Crisis	Energy Crisis: Background, Possible causes (Energy demand and	
(12 Lectures)	consumption, Production capacity and dependence on imports);	
	Ecologically friendly alternatives and Possible Measures	
Unit 3:	Ambient Air pollution, Indoor air pollution and Health Impacts	
Environmental	Surface water pollution, Ground water pollution and Health Impacts	
Contamination	Solid Waste Pollution and Sustainable Solid Waste Management;	
(12 Lectures)	Hazardous waste pollution, Radioactive waste, Electronic waste and	
	Biomedical waste	
Unit 4: Ecological	Ecological footprints: Concepts, perspectives, carbon footprint,	
Footprints and	water footprint, Overshoot of ecological footprint and biocapacity of	
Carrying Capacity	planet Earth, Resources Depletion.	
(12 Lectures)		

• Understanding the ecological footprints and resource depletion

Text Books

- 1. Cunningham WP and Cunningham MA (2002). Principles of Environmental Science: Inquiry and Applications. McGrawHill Publications, New Delhi, 418 pp.
- 2. Johri R (2009). E-Waste: Implications, regulations, and management in India and current global best practices. TERI Press, New Delhi. 330 pp.
- 3. McKillop A and Newman S (2005). The Final Energy Crisis. Pluto Press, London. 325 pp.
- 4. Miller GT Jr. (1996). Living in The Environment: Principles, Connections, and Solutions. 9th Edition. Wadsworth Publishing Company, New York. 727 pp.
- 5. Park C (2001). The Environment: Principles and Applications. 2nd Edition, Routledge Publishers, London and New York, 598 pp.

Reference Books

1. Galli A (2010). Stomping on biodiversity: humanity's growing Ecological Footprint. In: Commonwealth Ministers Reference Book. Pp. 156-159.

- 2. McKinney ML and Schoch RM (1998). Environmental Science: Systems and Solutions. Jones and Bartlett Publishers, Boston. 639 pp.
- 3. MoEF (2009). State of Environment Report, India 2009. Ministry of Environment and Forests, New Delhi
- 4. Sengupta B (2000). Environmental standards for ambient air, automobiles, fuels, industries and noise. Central Pollution Control Board, New Delhi, India. 78 pp.
- 5. WHO (2006). World Health Report 2006, World Health Organization, Geneva.

(iv) MARB CT-300: Environmental Impact Assessment and Management Plans (Department of Marine Science)

Course Outcomes

- Understanding on the concept of EIA, the associated processes and notifications
- Understanding on the EIA methodology, prior environmental clearance process and EMP
- Understanding on the restoration and rehabilitation procedures and policies.

MARB CT-300	Environmental Impact Assessment and Management Plans Credits: 04
Unit – 1	Introduction to Environmental Impact Assessment. Environmental impact
	Statement and Environmental Management Plan. EIA notifications of
(20 Hours)	Government of India from time to time. Guidelines for Environmental
	audit.
	Environmental Impact Assessment (EIA) Methodologies. Generalized
Unit – 2	approach to impact Assessment. EIA processes, Scoping EIA
	methodologies, Procedure for reviewing Environmental impact analysis
(20 Hours)	and statement. Environmental Management Plan and its monitoring,
	Evaluation of proposed actions.
Linit _ 2	Nexus between development and environment, Socio-economic impacts,
01111 - 5	Aid to decision making, Formulation of development actions, Sustainable
(20 Hours)	development, categorization of projects under EIA, project planning and
	implementation, Impact prediction, Mitigation measures.
	Introduction to. Selection of appropriate procedures, Restoration and
Lipit – 4	rehabilitation technologies. Landuse policy for India. Urban planning for
01111 - 4	India. Rural planning and landuse pattern. Environmental priorities in India
(20 Hours)	and sustainable development.
	CRZ notifications and Environmental Impact Assessment in coastal zone.
	Coastal zone management plans of India.

Text Books

- 1. W.P. Cunningham, 2010: Principles of Environmental Science.
- 2. Satsangi and A. Sharma 2015: Environmental Impact Assessment and Disaster Management.
- 3. R.R.Barthwal 2002: Environmental Impact Assessment.
- 4. C.H.Ecceleston, 2004: Environmental Impact Assessment.
- 5. J. Glassion, 2011: Introduction to Environmental Impact Assessment.
- 6. Glasson J., Therivel R., Chadwick A, (2005): Introduction to environmental impact assessment Taylor & Francis Group, London and New York.

- 7. Morris P., Therivel R., (2009): Methods of Environmental Impact Assessment 2009, 3rdedition, Routledge, Taylor & Francis Group, London and New York.
- 8. Morris P., Therivel R., (2001): Methods of Environmental Impact Assessment 2001, 2nd edition, Spon Press, Taylor & Francis Group, London and New York.
- 9. Eccleston C. H., (2011): Environmental Impact Assessment 2011, CRC Press, Taylor & Francis Group.

Reference Books

- 1. J. Hou, 2015: New Urbanism: The future City is Here.
- 2. James R. Craig, 2010: Earth Resources and the Environment.
- 3. R.Paliwal and L. Srivastava, 2014: Policy Intervention Analysis- Environmental Impact Assessment.

(v) ZOOL CT-300: Conservation Biology (Department of Zoology)

Course Outcomes

- Understanding on fundamentals of Biodiversity, measuring biodiversity, international and national efforts
- Understanding on molecular phylogeny and different conservation measures to conserve biodiversity.
- Understanding on values of bio-resources and develop compassion toward bio-resources.

ZOOL CT - 300	Conservation Biology	Credits: 04
Unit I Basic Concepts (16 Lectures)	Biodiversity (genetic diversity, species diversity, e and its use, Causes of biodiversity losses, IUCN re species, Invasive species, Alien species, Indicato species, Umbrella species, Flagship species, Charisr	ecosystem diversity) ed list of threatened r species, Keystone natic species
Unit II Measuring Biodiversity (16 Lectures)	Alpha, Beta and Gamma diversity, Species Richn Simpson index(D), Shannon-Weiner Index (H'), i calculator software	ess(S), Evenness(E), dea on biodiversity
Unit III	National Act and International Act relate	d to Biodiversity
International and	Conservation: Biological diversity Act 2002, N	ational Biodiversity
National efforts	Authority, People Biodiversity Registrar, Conve	ntion on Biological
for conserving	diversity, Cartagena Protocol and Nagoya Pr	otocol, Sustainable
biodiversity	Development Goal and Biodiversity, Aichi Biodive	rsity Targets, CITES,
(16 Lectures)	WWF	
Unit IV	In-situ conservation (Indian context) (Sanctua	ries, National and
Conservation	Biosphere reserves) and Ex-situ conservatior	n (Indian context)
Measures and	(Botanical gardens, zoos, cryopreservation, gene ba	ank)
Molecular	NCBI data base, basic idea on phylogenetic tree	e, Construction and
Phylogeny	interpretation of molecular phylogeny tree based of	on COI and 16s rRNA
(16 Lectures)	gene sequences using MEGA and other tools	

26. ENVS VAC 307: Value Added Course (Non-Credit)

A. Waste Management

Course Outcomes

- Understanding on characteristics and types of waste and their environmental impacts
- Understanding on solid and hazardous waste management (tools and techniques)
- Understanding on liquid waste management and treatment options

ENVS VAC 307	Waste Management	Credits: Nil
Unit 1: Solid Wastes	Types, sources, characteristics, and impact on envi Waste generation rates, Concepts of waste reduct	ronmental health. tion, recycling and
(10 Lectures)	reuse. Collection, segregation and transport Handling and segregation of wastes at source storage of municipal solid wastes. Solid w technologies. Mechanical and thermal volume rec and chemical techniques for energy and other r Composting, Vermicomposting, Incineration of soli	of solid wastes e. Collection and waste processing duction. Biological esource recovery. d wastes.
Unit 2: Solid Waste Disposal in Landfills (08 Lectures)	Site selection, design, and operation of sanitary landfills and landfill bioreactors; leachate management; landfill closure and post-closur monitoring; landfill remediation.	y landfills; secure and landfill gas e environmental
Unit 3: Hazardous Wastes (06 Lectures)	Definition, sources and characteristics: H categorization, generation, collection, transport disposal. Legislation on management and hand wastes	azardous waste t, treatment and ling of hazardous
Unit 4: Liquid Waste and Treatment Options (06 Lectures)	Waste water composition, waste water treatment treatment, treatment technologies and design cri- treatment, primary treatment, secondary treatment), effluent discharge standards for industries	it plants (types of iteria (Preliminary eatment, tertiary various types of

Text Books

- 1. J. Glynn Henry and Gary. W. Heinke, "Environmental Science and Engineering", Prentice Hall of India, 2004.
- 2. A. D.Bhide and B.B.Sundaresan, "Solid Waste Management Collection, Processing and disposal" Mudrashilpa Offset Printers, Nagpur, 2001.

Reference Books

1. Biomedical Waste (Management and Handling) Rules, 1998

B. Bioresources for Livelihood Development

- Understanding on the potential of bio resources as livelihood support systems
- Understanding on sustainable indigenous farming practices and alternative livelihood options
- Basic working knowledge on extraction of products from bio resources (e.g. vermicompost, honey, silk loom, sea food, mahua extract, medicinal extracts from flora and fauna).

• Understanding on prospects of eco-tourism through bioresources.

ENVS VAC 307	Bioresources and Livelihood Development Credits: Nil
Unit 1: Bioresources	Concept, classification, sources, potential of bioresources for
	sustainable livelihood, best practices, bioresources management
(06 Lectures)	policies (IBIN network)
Unit 2:Agro-	Sustainable agro-practices (concepts & techniques), Community
Bioresources	Managed agriculture, Organic Farming (Concept, status: local &
&Sustainable Practices	global, principles and practices: good health & zero hunger,
	Indigenous Technical Knowledge (ITK), organic certification),
(09 Lectures)	Organic Inputs (composting, nutrient enrichment, green
	manuring), other practices (e.g. fungi-culture, apiculture, dairy,
-	poultry).
Unit 3: Blue Bio-	Principles and best practices of aquaculture, mariculture, algal
Resources	culture, aquaponics (freshwater and marine), therapeutics from
	the Sea, sustainable fisheries (craft and gears, cage culture,
(09 Lectures)	lobster fattening), fish processing technology and quality control,
	fish and shellfish breeding techniques (ornamental and edible),
	and scope of eco-tourism.
Unit 4: Livelihood	Threats to traditional livelihood, food insecurity, impact of
Development Strategies	globalization and urbanization, livelihood adaptation planning,
	technology & knowledge management, development of bio
(06 Lectures)	resource-based livelihood skills, bio entrepreneurship, resource
	conservation, community-based initiatives and case studies

Text Books

- 1. Dahama AK (2009). Organic farming for sustainable agriculture, Agrobios Publishers.
- 2. Palaniappan SP and Annadurai K (2018). Organic farming Theory and Practice, Scientific Publishers (India).
- 3. Reddy SR (2017). Principles of organic farming. Kalyani Publisher, Ludhiana.
- 4. Pillai TVR and Kutty MN (2005). Aquaculture: Principles and Practices, Wiley-Blackwell.
- 5. Stickney RR (2009). Aquaculture: An Introductory Text, CAB International Publishers.
- 6. Srivastava CBL (1999). Fish Biology, Narendra Publishing House (India).

- Ayyappan S, Jena JK, Gopalakrishnan A and Pandey AK (2006). Handbook of fisheries and aquaculture, 1stedition. Directorate of Information and Publications of Agriculture, Indian Council of Agricultural Research.
- APHA, AWWA, WPCF (1998). Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington, D. C.
- 3. Santhanam R, Sukumaran N and Natarajan P (1987). A Manual of Freshwater Aquaculture. Oxford & IBH Publishing Co. Pvt. Ltd.

27. Student Seminar (Departmental Journal Club)

All the students shall be instructed to present a research article published in peer reviewed journals with necessary supervision and guidance from faculty members. The evaluation shall be out of 10 marks, and the said mark shall be reflected as one of the components in the end-term practical paper.

SEMESTER-IV

28. ENVS C-401: Disaster Management (Core Course, 04 Credits)

Course Outcomes

- Understanding general concepts in the dimensions of natural and human induced disasters
- Learning about practices of disaster preparedness, response and recovery processes.
- Understanding and analyzing approaches of Disaster Management
- Building skills to respond to disaster

ENVS C-401	Disaster Management Credits: 04
Unit 1: Introduction	Background and Types (Geological: earthquakes, landslides, tsunami,
to Disasters	mining; Hydro-Meteorological: floods, cyclones, lightning, thunder-
	storms, hail storms, avalanches, droughts, cold and heat waves;
(12 Lectures)	Biological: epidemics, pest attacks, forest fire; Technological: chemical,
	industrial, radiological, nuclear)
Unit 2: Risk	Disaster Risk: Concepts, types, Acceptable risk and Risk assessment.
Assessment and	Vulnerability: Concept, Observation, Identification, types and dimensions;
Vulnerability	Systematic management and Strategic planning for vulnerability
Analysis	reduction
(12 Lectures)	
Unit 3: Disaster	Nature, Importance, Dimensions and Scope of Disaster Management.
Management	Disaster Preparedness: concept, significance, measures, Disaster
(Preparedness and	Preparedness Plan (Concept, significance, prediction, early warnings and
Response)	safety measures)
(12 Lectures)	Role of science and technology in Disaster Risk Reduction
Unit 4: Disaster	Disaster Profile of India – Mega Disasters of India and Lessons Learnt,
Management in	Disaster Management Act 2005, National Policy, Guidelines and Plans on
Practice	Disaster Management; Role of Government (local, state and national),
(12 Lectures)	Non-Government and Inter Governmental Agencies

Text Books

- 1. Smith, K. (1992). Environmental Hazards, London.
- 2. Bell, F.G (1999). Geological Hazards.Routledge, London.

- 1. Krynine, D.S. and Judd, W.R. (1998). Principles of Engineering Geology by, CBS, New Delhi.
- 2. Bryant, E. (1985). Natural Hazards by, Cambridge University Press. London.
- 3. Nagarajan, R. (2001). Landslide Disaster Assessment and Monitoring, Anmol Publications, New Delhi.

- 4. Cutter, Susan L (1999). Environmental risks and hazards, Prentice Hall of India, New Delhi.
- 5. Bill Mc Juire, Ian Mason and C. Killburn (2002). Natural hazards and Environmental change, Oxford University Press, New York.
- 6. Gupta, Harsh K. (2003). Disaster Management, Universities Press (India) Pvt. Ltd
- 7. Coppola, Damon P. (2006). Introduction to International Disaster Management.

29. ENVS C-402: Environmental Law: Acts, Notifications and Conventions (Core Course, 04 Credits)

Course Outcomes

- Understanding on various relevant acts and notifications for protection of environment and conservation of natural resources
- Understanding on different international conventions and treaties for on protection environmental and conservation natural resources

ENVS C - 402	Environmental Law: Acts, Notifications and Credits: 04
	Conventions
Unit 1: Acts for	Articles in Indian Constitution, and different Acts for Environmental
Environmental	Protection and their provisions (Forest (Conservation) Act 1980,
Protection	Wildlife (Protection) Act 1972, 2006, Biological Diversity Act 2002,
(12 Lectures)	The Mines and Minerals Act 2016, The Water Act 1974, The Air Act
	1981, Environmental Protection Act 1986)
Unit 2: Notifications	EIA Notification and its provisions, CRZ Notification & its provisions,
for Environmental	RRZ Notification and its provisions, ESZ notification and its provisions
Protection	
(12 Lectures)	
Unit 3: International	Stockholm Convention on Persistent Organic Pollutants (POPs), Sofia
Conventions	Protocol, Montreal Protocol, United Nations Framework Convention
(Physico-chemical	on Climate Change (UNFCC), United National Convention for
Aspects)	Combating Desertification (UNCCD),
(12 Lectures)	
Unit 4: International	Convention on Biological Diversity (CBD), Ramsar Convention,
Conventions	Convention on Conservation of Migratory Species of Wild Animals
(Biological Aspects)	(CMS), Convention on International Trade in Endangered Species of
(12 Lectures)	Wild Fauna and Flora (CITES, Washington Convention), United
	Nations Convention on Law of the Sea (UNCLOS)

Text Books

- 1. Doabia TS (2017). Environmental & Pollution Laws in India (Set of 2 Vol). 3rd Edition. LexisNexis. 3496 pp.
- 2. Ghosh S (2019). Indian Environmental Law: Key Concepts and Principles. 1st Edition. The Orient Blackswan. 360 pp.

Reference Books

 Upadhyay S and Upadhyay V (2002). Handbook on Environmental Law - Forest Laws, Wildlife Laws and the Environment. Vols. I, II and III. Lexis Nexis- Butterworths-India, New Delhi.

30. ENVS C - 403: Forest and Wildlife: Ecology and Conservation (Core Course, 04 Credits)

Course outcomes

- Helps to learn basic of forest ecosystem and wildlife
- Equips students with tools of forest management and wildlife management
- Gives broader ideas of practices of forest and wildlife conservation

ENVS C - 403	Forest and Wildlife: Ecology and Conservation	Credits: 04
Unit 1:	Introduction to forest in India and World; Forest of	classification, Forest
Introduction to	Conservation Practices: Concepts, and their emer	rgence (Silviculture,
Forest Resource	Agroforestry, Social forestry, Community forestry, S	ustainable forestry)
(12 Lectures)		
Unit 2: Forest	Forest succession, Tree growth, Forest structure	; Forest Inventory:
Ecology	Forest management (tools and approaches),	Soil Conservation,
(12 Lectures)	Watershed and Hydrology Management.	
Unit 3:	Introduction, extinctions (historical and recent), r	isks faced by small
Fundamentals of	populations, Minimum Viable Population, Populatio	on Viability Analysis,
Wildlife Biology /	reserve design in theory and practice	
Conservation	Habitat ecology: concept of habitats from microha	abitat to biosphere,
Biology	effects of habitat fragmentation, Biodiversity hot sp	ots
(12 Lectures)		
Unit 4: Wildlife	In-situ and Ex-situ conservation approaches, cap	otive breeding and
Conservation and	propagation, rescue, rehabilitation and reintrodu	iction, gene banks,
Management	Wildlife administration and legislation	
(12 Lectures)	Protected Area Network in India: Wildlife sanctual	ries, national parks,
	biosphere reserves, etc.	

Text Books

- 1. Caughley G and Gunn A (1996). Conservation biology in theory and practice. Blackwell.
- 2. Davis, L.S., K.N. Johnson, P.S. Bettinger, and T.E. Howard. (2001). Forest management: to sustain ecological, economic and social values. 4th edition. McGraw Hill, New York.
- 3. Dwivedi AP (1993). Forests: the ecological ramifications. Natraj Publishers. Dehradun.
- 4. Giles R.II. (1994). Manual of Wildlife Management Techniques, Nataraj Publications, New Delhi.
- 5. Soule ME (1996). Conservation Biology. Sinauer Associates Inc. Sunderland Massachusetts.

- 1. Gadgil M. and Guha R. (1997). This Fissured Land. Oxford, New Delhi.
- 2. Gaston et al. (2000). Several papers. Special issue on biodiversity. Nature Vol. 405.
- 3. Myers et al. (2000). Biodiversity hotspots of the world. Conservation International.
- 4. Shiva V (1991). Ecology and the politics of survival: Conflicts over natural resources in India. United Nations University Press, Tokyo.

5. Singh C (1986). Common Property and Common Poverty, Oxford, New Delhi.

31. ENVS C-404: Coastal Zone Management (Core Course, 04 Credits)

Course outcomes

- Understanding on different coastal processes and systems
- Measuring different coastal processes using geoinformatics techniques
- Hands on experiences on digital mapping of coastal landscapes

ENVS C-404	Coastal Zone Management Credits: 04
Unit 1: Introduction	Coastal morphodynamics (Micro, macro and biogenic forms),
to Coastal System	Systems of change in coasts (cyclical and progressive), Classification
(12 Lectures)	of coasts.
Unit 2: Coastal	Coastal biogeography with special reference to different habitats
Habitats	(Mangroves, Seaweeds, mudflats, dunes, corals, lagoons), critically
(12 Lectures)	vulnerable coastal areas (CVCA); Coastal pollution, coastal
	environmental changes
Unit 3: Coastal	Livelihood support systems, threats, and opportunities;
Communities	vulnerability to climatic hazards and morphological changes;
(12 Lectures)	adaptations strategies and best practices, ICZM
Unit 4: Monitoring	Indian coast: Major environmental issues, problems and their
Coastal Processes	management; Techniques of monitoring changes in coastal
using Geoinformatics	processes and landforms; Application of Remote Sensing in Coastal
(12 Lectures)	Zone Management.

Text Books

- 1. Arnoff, S. 1989. Geographic Information Systems: A Management Perspective. Ottawa, Canada.
- 2. Burroughs, P.P. and McDonnel, R.A. 1998. Principles of GIS. Oxford University Press
- 3. Longley, P. A. 2005. Geographical Information Systems: Principles, Techniques, Management and Applications. John Wiley & Sons.
- 4. Shunji M. 1999. GIS Work Book Vol. 1 (Fundamental Course) and Vol. 2 (Technical Course).

Reference Books

- 1. Conolly, J. and Lake, M. 2006. Geographical Information Systems in Archaeology. Cambridge University Press.
- 2. Stamp, L. D. 1964. A Geography of Life and Death. Cornell University Press.

32. ENVS C-405: Major Project Work (Dissertation Work: Practical / Field Study; 08 Credits)

In this paper, all the students must opt for one supervisor (from among the faculty members of the department) and choose one research work (in consultation with and under the supervision of the supervisor), and carry out the major project work. The students shall have to submit the major project work report in the department for evaluation and assessment. This project work shall be equivalent to 02 core papers (08 Credits).

33. ENVS AC-406: Cultural Heritage of South Odisha

Aim of the Course (ପାଠ୍ୟକ୍ରମରଲକ୍ଷ୍ୟ)

Kabi Samrat Upendra Bhanja is the master-spirit of Odia Language and Culture during Medieval period. The campus of Berhampur University has been rightly named after Kabi Samrat Upendra Bhanja as 'BHANJA BIHAR'. South Odisha is the adorable storehouse of literary and cultural wealth of ancient and medieval Odisha which has elicited remarkable national acclaim. This course has been introduced with a view to familiarizing all the P.G. Students of Berhampur University with the excellent craftsmanship exemplified by the literary stalwarts including Kabi Samrat Upendra Bhanja along with the Arts, Culture and Folk Tradition of South Odisha. (ମଧ୍ୟଯୁଗୀୟ ଓଡିଆ ସାହିତ୍ୟ ଓ ସଂଷ୍କୃତିର ମହାନାୟକ କବି ସମ୍ରାଚ ଉପେନ୍ଦ୍ର ଭଞ୍ଜ I ବ୍ରହ୍ମପୁର ବିଶ୍ୱବିଦ୍ୟାଳୟ ତାଙ୍କ ନାମରେ 'ଭଞ୍ଜବିହାର' ଭାବରେ ନାମିତ I ଗଞ୍ଜାମ ସମେତ ଦକ୍ଷିଣ ଓଡ଼ିଶା ସମଗ୍ର ରାଜ୍ୟର ବୁଧହଂସ କେଳିସର I ଏହାର କଳା-ସାହିତ୍ୟ-ସଂଷ୍କୃତି-ଲୋକପରମ୍ପରା ସର୍ବଭାରତୀୟ ସ୍ୱୀକୃତିପ୍ରାପ୍ତ I ଏହାକୁ ଦୃଷ୍ଟିରେ ରଖ୍ ବ୍ରହ୍ମପୁର ବିଶ୍ୱବିଦ୍ୟାଳରେ ସ୍ନାତକୋଭର ଶ୍ରେଶୀର ସମୟ ଛାତ୍ରଛାତ୍ରୀଙ୍କୁ କବି ସମ୍ରାଚ ଉପେନ୍ଦ୍ର ଭଞ୍ଜଙ୍କ ସମେତ ଦକ୍ଷିଣ ଓଡ଼ିଶାର ଅନ୍ୟାନ୍ୟ ସାହିତ୍ୟିକ ପ୍ରତିଭା ଏବଂ ଏହି ଅଞ୍ଚଳର କଳା, ସଂଷ୍କୃତି, ଲୋକ ପରମ୍ପରା ସମ୍ପର୍କରେ ସାଧାରଣ ଧାରଣ ପ୍ରଦାନ କରିବା ପାଇଁ ଏପରି ଅଧ୍ୟୟନ ବ୍ୟବହ୍ୟା କରାଯାଇଛି I)

Details of the Course

This Paper consists of 50 marks with following 4 Units.

- Unit I: Literary works of Kabi Samrat Upendra Bhanja
- Unit II: Other Litterateurs of South Odisha
- Unit III: Cultural Heritage of South Odisha
- Unit IV: Folk and Tribal Traditions of South Odisha
- •୍ୟୁନିଟ-୧ :କବିସମ୍ରାଟ ଉପେନ୍ଦ୍ର ଭଞ୍ଜଙ୍କ କୃତି ଓ କୃତିତ୍ୱ
- ୟୁନିଟ-୨ :ଦକ୍ଷିଣ ଓଡ଼ିଶାର ଅନ୍ୟାନ୍ୟ ସାରସ୍ୱତ ସାଧକ
- ୟୁନିଟ-୪ :ଦକ୍ଷିଣ ଓଡ଼ିଶାର ଆଦିବାସୀ ଓ ଲୋକ ପରମ୍ପରା

Course Outcome (ପାଠ୍ୟକ୍ରମର ନିଷ୍ପର୍ଷ)

The teaching imparted to the P.G. students of Berhampur University on the various dimensions of the literary and cultural heritage of South Odisha will help them to acquire a valuable understanding of the same. They will6ବ inspired adequately to take the positives learnt from the course and use them in future in their personal literary and cultural pursuits and thereby promote the literature and culture of Odisha on a global scale. (ଓଡ଼ିଆ ସାହିତ୍ୟ ଓ ସଂସ୍କୃତିର ଏହିପରି ଏକ ଗୁରୁତ୍ୱପୂର୍ଣ୍ଣ ଦିଗରେ ପାଠଦାନ କରିବା ଦ୍ୱାରା କେବଳ ଯେ କବିସମ୍ରାଟ ଉପେନ୍ଦ୍ରଭଞ୍ଜ ଓ ଦକ୍ଷିଶ ଓଡ଼ିଶାର କଳା-ସାହିତ୍ୟ-ସଂସ୍କୃତି-ଆଦିବାସୀ ଲୋକ ଜୀବନ ଓ ଲୋକ ପରମ୍ପରା ସମ୍ପର୍କରେ ବିଶ୍ୱବିଦ୍ୟାଳର ଛାତ୍ରଛାତ୍ରୀ ସଚେତନ ହୋଇପାରିବେ; ତାହା ନୁହେଁ, କବିସମ୍ରାଟ ଉପେନ୍ଦ୍ରଭଞ୍ଜଙ୍କ ସହିତ ଦକ୍ଷିଣ ଓଡ଼ିଶାର ସାହିତ୍ୟିକ ପରିମଣ୍ଡଳ ଏବଂ ଏହି ଅଞ୍ଚଳର ସାଂସ୍କୃତିକ ବିଭବ ଓ ଲୋକପରମ୍ପରା ସମ୍ପର୍କରେ ବିଶ୍ୱବିଦ୍ୟାଳୟର ଛାତ୍ରଛାତ୍ରୀମାନେ ମଧ୍ୟ ସମ୍ୟକ ଜ୍ଞାନ ଆହରଣରେ ବ୍ରତୀ ହୋଇପାରିବେ ।)